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Abstract

Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection
from vibration data, however this method has limitations. Aconvolution adjustment to the MED definition
and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases
causing spurious impulses to be erroneously deconvolved. Aproblem with the MED solution is that it is an
iterative selection process, and will not necessarily design an optimal filter for the posed problem. Addition-
ally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we
expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated
Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target
goal of multiple periodic impulses, it is still an iterativenon-optimal solution to the posed problem and only
solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the
output goal, and should directly solve for the optimal filterin a non-iterative manner. To meet these goals,
we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvo-
lution Adjusted (MOMEDA). MOMEDA proposes a deconvolutionproblem with an infinite impulse train
as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox
with and without a gear tooth chip, we show that MOMEDA and itsdeconvolution spectrums according
to the period between the impulses can be used to detect faults and study the health of rotating machine
elements effectively.

Keywords: Gearbox, Fault detection, Minimum entropy deconvolution,Vibration, Rotating machine,
Deconvolution

1. Introduction

Rotating machines are a common piece of equipment with applications such as power generation tur-
bines, centrifuges, helicopters, washing machines, and more. Fault detection is often focused on their
components such as gears, bearings, or their shafts. Monitoring these machines and their components by
collecting vibration or acoustic emissions can be used as part of condition-based maintenance planning [1],
can detect faults as they start to develop to reduce further damage [2], or help diagnose already-developed
faults [3].
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Some of the common fault detection methods include Wavelet Transform-based methods [4, 5, 6], Spec-
tral Kurtosis [7, 8, 9], modeling approaches [10, 11, 12, 13,14, 15], Cyclostationary analysis [16, 17], and
deconvolution-based methods [18, 19, 8, 20]. Often these methods are combined together [19, 8], and are
often used in conjunction with machine learning as featuresto identify faults [3, 21, 22, 23].

In this paper we will be focusing on the deconvolution methods and their application to rotating machine
fault detection. Deconvolution approaches are based on defining a measure of a signal, often referred to as
a norm, then a FIR filter is designed such that the filtered output vibration reaches a maximum according to
the norm. Minimum Entropy Deconvolution (MED) was proposedby R. A. Wiggens in 1978 for seismic
recordings as an iterative selection procedure for a filter which aimed to maximize the Kurtosis norm of
the filtered output signal [24]. Kurtosis is a feature that islarger for impulse-like signals, and the author
successfully applied MED to reconstruct the impulse-like sources from measured seismic recordings. Re-
alizing that many rotating machine fault types are expectedto have impulse-like fault sources, in 2007 H.
Endo et. al. [19] first demonstrated MED’s effectiveness when applied to rotating machine fault detection
[19], and the method has been applied to rotating machine faults successfully in multiple studies since then
[8, 25, 5, 18, 20]. Despite the successful results with MED, there are several major drawbacks. Firstly,
MED is optimizing the norm Kurtosis which prefers a solutionof a single impulse. For rotating machines,
we instead expect a series of periodic impulses-like features as fault vibration sources. Secondly, MED is an
iterative approach that involves iteratively finding a goodfilter solution. Ideally, we would be able to solve
for the solution directly. Lastly, MED selects a ‘good’ solution and not necessarily the optimal solution to
the posed maximization problem.

To address some of the limitations of MED, in 2012 a new deconvolution problem called Maximum
Correlated Kurtosis Deconvolution (MCKD) was proposed based on an introduced Correlated Kurtosis
(CK) norm [20]. This problem was designed to deconvolve periodic impulses separated by a known period.
Although this partially addressed the need for a periodic impulse deconvolution goal, it was still an iterative
procedure, selected a ‘good’ filter solution (not optimal),required priori knowledge of the fault period, and
for non-integer fault periods required an additional resampling preprocessing stage. The computational cost
of designing the filter was expensive, meaning spectrums across possible fault periods were not practical.

In 1984, C. A. Cabrelli proposed a similar deconvolution problem to MED using a norm called the D-
Norm - which we call Optimal Minimum Entropy Deconvolution (OMED) [26]. It was demonstrated that
OMED is geometrically similar to MED. But unlike MED the deconvolution problem was shown to have
an exact optimal solution for the filter solution without theneed for an iterative process. The underlying
solution maximally deconvolves a single point impulse in the signal with respect to the rest of the signal.
In this paper, we show that although OMED is able to solve for the optimal solution to its problem, this
solution performs worse in rotating machine fault detection than MED - likely as a result of its even greater
preference to deconvolve only a single impulse solution.

We propose an adjustment to the convolution definition used by the MED and OMED problems to
remove a discontinuity between the assumed-zero input signal and the start of the input signal. If not
adjusted for, these algorithms tend to erroneously deconvolve a single impulse at this discontinuity. We
recommend using these adjusted solutions going forward when processing rotating machine vibration data.

Addressing the limitations of MED, OMED, and MCKD in application to rotating machines, we pro-
pose in this paper a new deconvolution method called Multipoint Optimal Minimum Entropy Deconvolution
Adjusted (MOMEDA). With MOMEDA, a target vector defines the location and weightings of the impulses
to deconvolve - allowing for periodic impulse train deconvolution target goals that are well-suited to the na-
ture of rotating machine faults of a single impulse-like vibration source per rotation. MOMEDA has a
non-iterative optimal solution directly for the filter, so no iterating is required for filter selection. Sets of
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target vectors can be solved simultaneously, allowing for spectrums of fault condition versus period ana-
lyzed to be plotted. Unlike MCKD, MOMEDA works with non-integer fault periods without a resampling
stage. Finally, we show using simulated data and experimental data from a gearbox with and without a
gear chip fault that MOMEDA can be used to effectively detect the presence of faults in rotating machines.
Experimental results are compared for MED adjusted, OMED adjusted, MCKD, and MOMEDA; each with
and without auto-regressive model prediction residual preprocessing.

In Section 2 we will provide background on existing deconvolution methods MED, MCKD, and OMED.
For MED and OMED we propose the convolution adjustment to fix the discontinuity that can cause spurious
impulses to be deconvolved. In Section 3 we present the MOMEDA problem formulation and solution for
a single target vector goal. Next in Section 4 we demonstratehow periodic impulse train targets can be
proposed and how MOMEDA can be used to solve for a set of targets simultaneously to generate a fault
spectrum according to the period of the fault. Experimentalresults are presented in Section 5 from a gearbox
setup with and without a gear tooth chip before presenting our conclusions and future work suggestions in
Section 6.

2. Background and Convolution Adjustments

2.1. Minimum Entropy Deconvolution

At the core of MED in rotating machine fault detection is designing a filter that extracts the periodic
impulse-like features associated with some faults. Given asampled vibration signal composed of multiple
components:

~x = ~hu ∗ ~u + ~hd ∗ ~d + ~he ∗ ~e,
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where~x is the measured machine vibration,~u is unknown input responsible for the system dynamics,~d
is an impulse train modeling a fault, and~e is white noise. The characteristic responses,~hu, ~hd, ~he, generally
represent the system dynamics, vibration transmission paths, and characteristics. Figure 1 illustrates an
example of how these components may present in a rotating machine under fault.

Kurtosis is large for a single impulse and the fault component, ~d, is a signal of high Kurtosis when
compared to the other signal components. As a result, it is postulated that selecting a finite length filter
~f to maximize the Kurtosis may design a filter that approximately extracts the high Kurtosis source fault
impulses with a time shift, while minimizing the low Kurtosis system dynamics and noise components. This
Kurtosis maximization problem under assumed zero mean output,~y, is described as follows:

max
~f

kurtosis= max
~f
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n
(
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Figure 1: Overview of the signal components in a simple rotating machine vibration signal

With convolution definition of output length equal to the input length:

~y = ~f ∗ ~x

~yk =

L
∑

l=1

flxk−l+1, k = 1, 2, . . . ,N, xn = 0 for n , 1, 2, . . . ,N

Or in matrix form:
~y = X̄T
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The iterative MED filter selection picks a ‘good’ solution tothis maximization problem, not necessarily
the optimal solution. The iterative selection method is derived by taking the derivative, equating it to~0, and
iteratively solving for~f . The iterative~f selection as derived by Wiggens is described as:

~f =

∑N
n=1 y2

n
∑N

n=1 y4
n

(

X̄0X̄T
0

)−1
X̄0

[

y3
1 y3

2 . . . y3
N

]T
(1)

Starting with a centered initial difference filter guess of~f = [0, . . . , 0, 1,−1, 0, . . . , 0], Eq. 1 is repeat-
edly applied to calculate filter~f , and this new filter is used to calculate the updated output~y before each
iteration. Termination is typically defined as either a number of iterations [20], or a minimum change in
filter coefficients between iterations [19]. Kurtosis of the resulting output is often used as a measure of fault.
An implementation in MATLAB is available in the External Resources Section.

Several problems with MED exist in application to rotating machine fault detection. If a large filter
length L is chosen, MED can design a filter to approximately extract a single impulse even from a white
noise signal, often referred to as a spurious impulse. See Figure 2 illustrating this issue when deconvolving
a single impulse from 1000 samples of Gaussian white noise and a 100 sample filter lengthL. Mitigations
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Sample number

Figure 2: Applying MED to Gaussian white noise yields a single deconvolved impulse. a) Zero-mean Gaussian white noise, and
corresponding b) MED outputy signal with filter sizeL = 100 and 10 iterations.

include selecting smaller filter lengthsL or terminating the iterative selection early before this solution can
be reached.

Another problem is that the solution to MED is iterative and may not correspond to an optimal solution.
Fault indication performance may vary depending on the termination condition. In some cases, the resulting
signal more closely extracts the periodic fault signal at anearlier termination condition [20].

MED is posing a deconvolution proposition that is not well-posed for rotating machine faults. While
MED is prefers to deconvolve a single impulse (maximum Kurtosis), in rotating machine faults we are
looking to deconvolve an impulses train with one impulse perrotation of the faulty element. In the next
section we will briefly review our previous work to adjust thedeconvolution problem to be better suited for
rotating machine fault detection.

2.2. Maximum Correlated Kurtosis Deconvolution

In 2012, MCKD was proposed [20] to iteratively deconvolve a series of impulses using the proposed
norm CK:

Correlated Kurtosis of First-Shift= CK1(T ) =

∑N
n=1 (ynyn−T )2

(
∑N

n=1 y2
n)2

,

Correlated Kurtosis of M-Shift= CKM(T ) =

∑N
n=1

(

∏M
m=0 yn−mT

)2

(
∑N

n=1 y2
n)M+1

whereM is the number of sequential impulses that are to be deconvolved andT is the period of separa-
tion for these impulses. The deconvolution is posed similarly to MED as:

MCKDM(T ) = max
~f

CKM(T ) = max
~f

∑N
n=1

(

∏M
m=0 yn−mT

)2

(
∑N

n=1 y2
n)M+1

It has an iterative selection procedure to select a good~f aiming to maximize this problem. Although
MCKD was found to improve deconvolution results in simulated and experimental data by deconvolving
a series of periodic impulses [20], it has many limitations including still being an iterative algorithm, not
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solving for the optimal solution to the posed problem, and only being able to deconvolve a small series of
impulses in a row as opposed to an infinite train of impulses.

2.3. Minimum Entropy Deconvolution with Convolution Adjustment

Application of MED to rotating machine data should use a different convolution definition that reduces
the tendency to deconvolve a single impulse at the start of the output signal~y. With the definition of MED,
the convolution definition assumes zero data forxn = 0, n < 1, which creates a discontinuity between
assumed zero samplex0 and the first samplex1. In the original proposed application of MED to seismic
recordings [24], the data at the start of~x were generally close to 0 and this definition was not a significant
issue. However, in application to rotating machine vibration this can cause a significant disturbance to be
identified between samples observed atx0 and x1 - causing a spurious impulse to be deconvolved at this
location or withinL samples of it due to a delay.

H. Endo et. al. [19] proposed applying an AR model residual preprocessing before applying MED to the
vibration signal (AR-MED), and this added step partially mitigates this discontinuity. Instead, for rotating
machines the MED convolution definition should be adjusted to only consider the output range without use
of any zero-assumed input data:

~y = ~f ∗ ~x
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Or in matrix form:
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Resulting in the MED adjusted (MEDA) iterative selection:

~f =

∑N−L
n=1 y2

n
∑N−L

n=1 y4
n

(

X0XT
0

)−1
X0

[

y3
1 y3

2 . . . y3
N−L

]T

This is solved iteratively similarly to MED. First select~f = [0, . . . , 0, 1,−1, 0, . . . , 0], then iteratively
solve the above equation recalculating~y using the new filter for each iteration. An implementation in
MATLAB is available in the External Resources Section. Figure 3 demonstrates how MED deconvolves
a spurious impulse at the discontinuity, how AR preprocessing mitigates the spurious impulse, and how
MEDA achieves a similar result as AR-MED.

2.4. Optimal Minimum Entropy Deconvolution

In 1984, Carlos A. Cabrelli [26] proposed a new norm towards deconvolving impulses called the D-
Norm, and geometrically demonstrated the deconvolution problem’s similarity to the MED problem. The
proposed D-Norm deconvolution problem has an exact non-iterative solution to solve for the filter coeffi-
cients. We refer to this method as Optimal Minimum Entropy Deconvolution (OMED) for its similarity
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xn = 0, n < 1

Discontinuity

Spurious impulse

a) MED and MEDA applied to simulated fault signal

-50 0 50 100 150 200 250 300
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b) AR-MED using 10th order AR model applied to simulated fault signal

xn:

MED(xn):

AR(xn):

AR-MED(xn):

MEDA(xn):

Sample number

Figure 3: a) MED, MEDA, and b) 10th order AR-MED applied to convergence with filter lengthL = 50 andN = 1000 input
samples of simulated data. The first 10 samples were discarded prior to MED and MEDA processing to align the AR model
residual signal withxn for better illustration.
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to the Minimum Entropy Deconvolution problem, and optimal for the problem’s ability to solve for the
optimal solution.

The D-Norm maximization problem is formulated as the following:

D-Norm= D(~y) = max
k=1,2,...,N

|yk |

‖~y‖
.

OMED : sup
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To find the maxima and minimas, this is differentiated with respect to the filter~f and solved to~0:

d
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Instead of following Cabrelli’s OMED convolution definition with xn = 0, n < 1 assumptions, we follow
a similar procedure using the modified convolution definition forming Optimal Minimum Entropy Deconvo-
lution Adjusted (OMEDA). This convolution adjustment is particularly important for OMED, otherwise it
has a tendency to deconvolve the discontinuity - which is nota real vibration feature. From the convolution
definition:
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~y, (3)

and converting Eq. (3) to matrix form forl = 1, 2, . . . , L and solving to~0 we have:
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0
~f , and by rearranging we have:

yk

‖~y‖2
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(X0XT
0 ) is the unnormalized Toeplitz autocorrelation matrix of~x with no assumed-zero data. Assuming

the inverse exists, we have:
yk

‖~y‖2
~f = (X0XT

0 )−1 ~Mk (5)

We observe that if~f is a solution to Eq. (5), then any multiple is also a solution,~f = c f̄ :

~y = cX0 f̄ = cȳ

cȳk

c2‖ȳ‖2
c f̄ = (X0XT

0 )−1 ~Mk

Therefore multiples of (X0XT
0 )−1 ~Mk are non-trivial solutions for~f . We pick the solution:

~f = (X0XT
0 )−1 ~Mk (6)

Finally, we need to solve for all the~f solutions acrossk = 1, 2, . . . ,N − L. Expanding Eq. (6) for
k = 1, 2, . . . ,N − L we have an array of possible~f solutions,F =

[

~F1, ~F2, . . . , ~FN−L

]

, which simplifies to:

F = (X0XT
0 )−1X0

Resulting in the array of possible outputsY =
[

~Y1, ~Y2, . . . , ~YN−L

]

:

Y = XT
0 (X0XT

0 )−1X0

Then the OMEDA solution for~f is the column inF corresponding to theY column with maximum
D-Norm. An implementation of OMEDA in MATLAB is available inthe External Resources Section.

Each potential output solution~Yk represents deconvolving only a single impulse at output sample yk

maximally. The end result of selecting the output maximizing the D-Norm over~Yk is selecting the filter
that best extracts any single-point impulse while minimizing the amplitude of the rest of output. This
solution, although it is the optimal solution to a similar problem to the MEDA maximization problem,
tends to particularly prefer to deconvolve only single impulses over the expected periodic fault impulses.
Consequently, OMEDA often is not as useful as MEDA. Comparing MEDA to OMEDA, Figure 4, we can
see OMEDA is able to successfully deconvolve the goal of a single impulse using a smaller filter size than
MEDA.

Although OMEDA generally under performs in comparison to MEDA in rotating machine fault ex-
traction, it is an important building block towards the goalof solving for an optimal~f that is solved for
non-iteratively to extract periodic fault impulses.
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Figure 4: MEDA and OMEDA applied to a simulated fault signal.MEDA is iterated to convergence, while OMEDA solves for the
optimal solution.

3. Multipoint Optimal Minimum Entropy Deconvolution

For rotating machine fault detection, we propose a deconvolution target of multiple impulses at known
locations - as opposed to a target of a single impulse. We introduce this maximization problem as Multipoint
Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA):

Multi D-Norm = MDN(~y, ~t) =
1

‖~t‖

~t T~y
‖~y‖

MOMEDA : max
~f

MDN(~y, ~t) = max
~f

~t T~y

‖~y‖
(7)

Where the target vector,~t, is a constant vector that defines the location and weightings of the goal
impulses to be deconvolved. For example,

~t =
[

0 0 0 1 0 0 0 1 0 0
]T
,

the above~t will aim to deconvolve two impulses in the output signal: oneimpulse atn = 4 and the other
at n = 8. With this level of control, the target vector~t can be used to control the separation, location, and
windows for the impulses to be deconvolved. The absolute value is discarded to require the deconvolved
impulses to match in polarity - which is expected in rotatingmachine faults. This is a simpler problem than
OMEDA, since no iteration through an array of solutions overk = 1, 2, . . . ,N − L is required.

This Multi D-Norm is normalized to between 0 and 1, where a value of 1 indicates that the optimal
target solution was reached. In Appendix A the derivation ofthis normalization factor is provided. This
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normalization is important such that fault indicators fromdifferent fault periods or signals with different
sampling rates can be comparable to one another in fault indication level.

Following a similar derivation as OMEDA, we solve the extremas of Eq. (7) by taking the derivative
with respect the filter coefficients, ~f = f1, f2, . . . , fL:

d

d ~f

(

~tT~y
‖~y‖

)

=
d

d ~f

t1y1

‖~y‖
+

d

d ~f

t2y2

‖~y‖
+ . . . +

d

d ~f

tN−LyN−L

‖~y‖
(8)

We already solved the derivative for each of these terms as part of the OMEDA derivation, Eq. (4), so
we know:

d
~d f

tkyk

‖~y‖
= ‖~y‖−1tk ~Mk − ‖~y‖

−3tkykX0~y

~Mk =


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

Therefore Eq. (8) can be written:

d

d ~f

(

~tT~y
‖~y‖

)

= ‖~y‖−1
(

t1 ~M1 + t2 ~M2 + . . . + tN−L ~MN−L

)

− ‖~y‖−3~t T~yX0~y (9)

With the simplification,
t1 ~M1 + t2 ~M2 + . . . + tN−L ~MN−L = X0~t,

and solving for extremas by equating to~0, Eq. (9) becomes:

‖~y‖−1X0~t − ‖~y‖
−3~tT~yX0~y = ~0

~tT~y

‖~y‖2
X0~y = X0~t

Since~y = XT
0
~f and assuming

(

X0XT
0

)−1
exists:

~tT~y

‖~y‖2
~f =

(

X0XT
0

)−1
X0~t (10)

Since multiples of~f are also solutions to Eq. (10), multiples of~f =
(

X0XT
0

)−1
X0~t are solutions to the

MOMEDA problem. In summary, the MOMEDA filter and output solutions are calculated simply as:

~f =
(

X0XT
0

)−1
X0~t,

X0 =
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~y = XT
0
~f

Where the target vector~t is the same length as the output (N − L + 1), and represents the location and
weightings at which to deconvolve impulses in the output. This solution can be described as simply the

inverse of the unnormalized Toeplitz autocorrelation matrix of ~x with no-assumed zero input,
(

X0XT
0

)−1
,

multiplied by the filtered signal~x∗~t to yield the optimal filter~f solution for MOMEDA. An implementation
of MOMEDA in MATLAB is available in the External Resources Section.

Controlling the locations of the multiple impulses to be deconvolved along with MOMEDA’s non-
iterative optimal solution provide the basis for a machine diagnosis tool. In the next section we will present
how the target vector selection can be used to analyze and generate spectrums to identify faults in rotating
machines.

4. Target Propositioning and Fault Indication

For rotation machine fault detection with MOMEDA, solutiontargets of impulse trains separated by a
proposed fault period should be considered:

tn = Pn(T ) = δround(T ) + δround(2T ) + δround(3T ) + . . . ,

~t = ~P(T ),

whereδn denotes an impulse at samplen. Non-integerT should be considered and for each impulse
position rounded to nearest position, since in reality the fault period is unlikely to coincide exactly with a
multiple of the sampling period. IfL ≥ T the time-domain location of the fault impulse train~t does not
need to be swept across all position shifts, since the designed filter can adjust in time delay to the necessary
position. Usage of filter lengths less than the fault period,L < T , is not discussed in this paper, but can be
implemented by shifting the target vector at multiple positions and selecting the best match.

Figure 5 plots the result for MEDA versus MOMEDA for a simulated fault signal, where in this case
we have increased the noise to raise the deconvolution difficulty. Due to the larger filters sizes and higher
noise level, MEDA is only able to extract a single impulse in each case, while MOMEDA deconvolves the
periodic fault impulses. Note that in the case ofL = 500= N/2 the filter length is equal to the length of the
output signal~y resulting in MEDA and MOMEDA being able to exactly deconvolve their optimal goals.

MOMEDA can be calculated for a spectrum ofM target vector candidates~t1, ~t2, ..., ~tM by:

F =
[

~f1 ~f2 . . . ~fM

]

=
(

X0XT
0

)−1
X0

[

~t1 ~t2 . . . ~tM

]

Y =
[

~y1 ~y2 . . . ~yM

]

= XT
0 F

We introduce Multipoint Kurtosis (MKurt) to use as a measureof fault:

Multipoint Kurtosis=

(

∑N−L
n=1 t2n

)2

∑N−L
n=1 t8n

∑N−L
n=1 (tnyn)4

(

∑N−L
n=1 y2

n

)2

This definition is based on Kurtosis, however it has been expanded to multiple impulses at controlled
locations according to the target vector and is normalized such that it reaches a value of 1 if a solution in
the direction of~t is reached. See Appendix B for the derivation of the normalization factor.
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b) MEDA filtered output c) MOMEDA filtered output, tn=Pn(50)

Fault signal (T=50)

Fault signal + noise

(SNR = 0.46)

xn = Fault signal + 

          noise +

          harmonic

L = 50

L = 100

L = 200

L = 500

L = 50

L = 100

L = 200

L = 500

10008006004002000

a) Simulated fault signal

Sample number Sample number
10008006004002000 10008006004002000

Figure 5: a) A simple simulated signal with a fault atT f ault = 50 under strong noise, b) MEDA-filtered output after iterating to
convergence, and c) MOMEDA-filtered output.
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a) Faulty signal MOMEDA MKurt spectrum
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b) MOMEDA MKurt spectrum of the same signal without fault

Figure 6: MOMEDA spectrum with a step of∆T = 0.05 and a filter length ofL = 200, applied to a simulated fault signal seen in
Figure 5 of periodT = 50 and lengthN = 5000 for a) a faulty signal under strong noise, and b) the samesignal without the fault.

Using a spectrum of periodic impulse train target vectors that step over a range of periods, and plotting
the MKurt result produces a spectrum that can be used to identify faults. Figure 6 plots the spectrum from
T = 2 to T = 220 with a step of∆T = 0.05 for the same simulated fault signal under heavy noise. Plotting
the spectrum allows for clear identification of peaks corresponding to the fault period of 50, along with its
multiples, factors and factors of the multiples (eg 75 beinga factor of 3T = 150). From this spectrum, it
is clear that MOMEDA is able to differentiate between the faulty period and its related factorsfrom the
surrounding non-fault periods.

When working with experimental data, it was found that further extending the target vector,~t, by intro-
ducing a windowing may improve the spectrum clarity. By adding a windowing function, a tolerance for
bearing slippage or slight machine speed variations is allowed for and larger period steps,∆T , can be used.
For example,

~t = [1, 1, 1, 1, 1] ∗ ~P(T )

The above~t introduces a rectangular window function. This window function is not studied in this
paper, and an empty window of [1] is used for all processing. The next section presents results from an
experimental setup with a seeded fault.

5. Experimental Results

Experimental results are compared for a gearbox with and without a seeded gear tooth chip from an
experiment performed by X. Tian et. al. [27]. This data has been used previously in other machine fault
detection studies [4, 20].

The experimental setup, Figure 7, includes a motor, gearbox, and loading break. Gear 1 is switched
between a healthy gear and a faulty gear with a seeded tooth chip for comparison. The rotational frequency
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Gear 1, N = 48

Gear 2, N = 16

Gear 3, N = 25

Gear 4, N = 40

4.2:1
Motor

Break

Gearbox

Gear 1 with Chipped tooth

Shaft 1

Figure 7: Machine setup for a seeded gear tooth chip experiment, and Gear 1 with the seeded tooth chip. [20]

of Gear 1 is varied from 10 to 40 Hz at 5 Hz intervals, and for each condition two recordings are performed.
A PCB 352C67 accelerometer is attached to the machine casing, and sampled at rates of 2560 and 5120 Hz
depending on the rotational frequency. 8192 samples are recorded per measurement. Since there was no
direct measurement of the rotational speed of Shaft 1, the rotational period of Gear 1 is estimated for each
vibration signal by peak finding on the MOMEDA MKurt spectrumwithin ±20 samples from the expected
period at a step of 0.05 samples. The period corresponding tothis peak is used as the rotational period.
Table 1 illustrates the characteristics and calculated speed for each measurement under each condition.

Table 1: Measured vibration signals and estimated periods

Dataset Fs (Hz) T f ault (samples) Thealthy (samples)

10Hz #1 2560 273.35 260.95
10Hz #2 2560 273.35 260.95

15Hz #1 2560 177.52 173.32
15Hz #2 2560 177.47 173.32

20Hz #1 5120 263.55 259.25
20Hz #2 5120 263.55 259.20

25Hz #1 5120 209.65 207.05
25Hz #2 5120 209.60 207.05

30Hz #1 5120 174.22 172.37
30Hz #2 5120 174.17 172.37

35Hz #1 5120 148.99 147.64
35Hz #2 5120 149.09 147.64

40Hz #1 5120 130.40 129.10
40Hz #2 5120 130.45 116.20

Figure 8 illustrates the relationship between filter lengthL, the fault metric MKurt, and the MKurt
difference between healthy and faulty states at each setup condition. Only filter lengths ofL equal to or
larger than the Gear 1 rotational period were considered foreach vibration measurement. Under all filter
lengths and machine conditions, the MKurt value under faultwere larger than the values under healthy
condition. A filter length ofL = 500 is chosen for the rest of the results as a balance between the lower
variance associated with smaller filter lengths, and higherMKurt difference associated with larger filter
lengths.
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Figure 8: MOMEDA fault detection results versus filter length L.

For the first measurement of the machine vibration at 40 Hz, Figure 9 illustrates the faulty and healthy
MOMEDA MKurt spectrums, inputs, outputs, and designed FIR filters by MOMEDA. In both the faulty and
healthy vibration measurements there is a strong peak that is identifiable at the gear period, however under
faulty conditions the peak is larger in magnitude. The presence of a peak even under healthy condition is
not unexpected, since factors such as non-uniform force between the gears as the teeth mesh may cause
features that can be deconvolved. Figure 10 illustrates thespectrums of all measurements under faulty and
healthy conditions.

To compare MOMEDA to the other deconvolution algorithms andto study the impact of AR-model
residual preprocessing, we compare the following methods:

MED Minimum Entropy Deconvolution

AR-MED Autoregressive Minimum Entropy Deconvolution

MEDA Minimum Entropy Deconvolution Adjusted

AR-MEDA Autoregressive Minimum Entropy Deconvolution Adjusted

MCKD3 Maximum Correlated Kurtosis Deconvolution 3rd Shift

AR-MCKD3 Autoregressive Maximum Correlated Kurtosis Deconvolution 3rd Shift

MCKD5 Maximum Correlated Kurtosis Deconvolution 5th Shift

AR-MCKD5 Autoregressive Maximum Correlated Kurtosis Deconvolution 5th Shift

OMEDA Optimal Minimum Entropy Deconvolution Adjusted

AR-OMEDA Autoregressive Optimal Minimum Entropy Deconvolution Adjusted

MOMEDA Multipoint Optimal Minimum Entropy Deconvolution Adjusted

AR-MOMEDA Autoregressive Multipoint Optimal Minimum Entropy Deconvolution Adjusted

For parameter selection of the MCKD and MED-based algorithms, we used the same deconvolution
iteration count and auto-regressive model parameters as studied previously with this experimental data [20]:

• Termination condition: 100 iterations. This is chosen as larger number to approximate convergence.
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Figure 9: Faulty and healthy MOMEDA MKurt spectrums, measured vibrations, MOMEDA filtered outputs, and MOMEDA-
designed FIR filters for the first measurement of the machine at 40 Hz using a filter length of 500,L = 500.
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Figure 10: MOMEDA MKurt spectrums for vibrations measured a) with and b) without a gear tooth chip. A step of∆T = 0.05
and filter length ofL = 500 is used.

• AR model order: 40% the number of samples in a single rotation.

We found that using the smaller filter lengths for the MED and MCKD-based methods (80% the number
of samples in a single rotation) and comparing to the longer filter length results for MOMEDA (L = 500)
did not fairly represent the non-MOMEDA based methods. Instead, we found the MED and MCKD-based
methods had better fault indication performance using a filter length ofL = 500 and therefore we instead
used this filter length with all methods for fair comparison.

Fault indicators vary across methods. MED proposes using Kurtosis as the fault indicator, MCKD pro-
poses using Correlated Kurtosis (CK), and MOMEDA uses MKurt. To compare fault metrics, we analyzed
the fault indication performance of all deconvolution methods using each fault metric of Kurtosis, third-shift
CK, Multi D-Norm, and MKurt. To compute Multi D-Norm and MKurt for output signals we calculate the
maximum result for all shifts of the target impulse train at astep of∆T = 0.05 where the period of rotation
of the faulty gear,Tgear, separates the impulses:

Peak Multipoint Kurtosis= max
s=1,1+∆T,1+2∆T,...,Tgear

MKurt(~y, ~ts)

Peak Multi D-Norm= max
s=1,1+∆T,1+2∆T,...,Tgear

MDN(~y, ~ts)

~ts = δround(s+Tgear) + δround(s+2Tgear) + δround(s+3Tgear) + . . .

For better illustration, we adjusted the scale of the third-shift CK by taking the cubed root of this feature.
We processed the faulty versus healthy condition difference between each fault indicator for each recorded
signal. Figure 11 plots this fault indication difference along with the means, standard deviations, and 95%
confidence intervals. Statistical significances between the mean fault indication differences are evaluated
by a one-way repeated measures analysis of variance (ANOVA)and Tukey’s honest significance test and
considered significant ifp < 0.05. From this, we draw several observations:

• MOMEDA is able to indicate the fault when using any of the fault indicators. We can not say that
the fault detection performance is necessarily better or worse in fault detection compared to other
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methods. A larger fault indicator difference does not necessarily translate to a better algorithmper-
formance. Ideally, a good fault indication algorithm wouldindicate a small fault metric increase by
a similar amount regardless of machine rotational speed, and this metric would increase in value as
fault level increases. Too large of a fault indicator difference in our results could indicate a lack in
sensitivity to detect the difference between the level of the fault present in the machine.

• AR model preprocessing did not have a clear positive fault detection result when using Kurtosis, CK,
or MKurt fault indicators on any method. When using the MultiD-Norm fault indicator, it appears to
have improved the MED and MEDA algorithms but decreased the performance of the MCKD3 and
MCKD5 methods. We could not identify a statistically significant effect on fault indication perfor-
mance by preprocessing with AR models. There may be a significance that could be detected with a
larger sample size, or it may have more of an effect on different fault types, machine configurations
or equipment setups.

• Although MEDA had a higher mean difference than MED when using the Kurtosis fault indicator,
this difference was not found to be statistically significant. A larger sample size may be able to detect
if there is a significance. We suggest using MEDA over MED since there are some measurement
conditions, such as measurements that have larger low-frequency components or DC offsets, that
would cause MED to erroneously deconvolve the discontinuity.

• Care needs to be taken when selecting and comparing the faultindicators for each deconvolution
methods. Performance of each method differs according the fault indicator studied.

6. Conclusion

In this paper, we introduced a new deconvolution-based method called MOMEDA for detecting faults in
rotating machines. The introduced MOMEDA method has advantages over the previous applied deconvo-
lution methods of MED and MCKD, since it provides a solution for the filter that is an optimal solution, can
be solved for directly (non-iteratively), and the target goal in the problem more closely matches the expected
fault dynamic sources of an infinite impulse train. By simultaneously solving for a range of impulse-train
period targets, we proposed a spectrum analysis approach called MOMEDA MKurt spectrum that can be
used to identify faults in rotating machines. We applied MOMEDA and the resulting MKurt spectrum
to successfully differentiate between faulty and healthy condition in both simulated data and data from a
gearbox with chipped tooth experiment.

We proposed a correction to MED called MEDA. The correction adjusts the convolution definition to
remove the input discontinuity. As a result, this resolves some spurious impulse deconvolution issues faced
when applying MED to rotation machine signals. We recommendusing MEDA over MED going forward
to improve reliability, especially when dealing with signals with lower frequency components with respect
to the sampling frequency.

When comparing the difference in the fault indicators between healthy and faulty conditions, we found
that using filter lengths larger than the period of the fault improved the fault detection results of MED,
MEDA, OMEDA, and MCKD methods. Restricting to filter lengthsshorter than the fault period should not
be considered a requirement, and can limit the fault indication performance of the methods.

In our experimental results, we found no statistically significant difference for fault detection by pre-
processing with AR models prior to applying any deconvolution method. There may still be an effect on
different machine configurations, different fault types, or there may be a difference that could be detected
if a larger number of measurements were studied. Until this difference is demonstrated as significant and
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positive, the need to preprocess data with AR models before applying deconvolution remains unproven and
perhaps not necessary.

As further work, application of MOMEDA to more experimentalsetups, fault types, and machine ele-
ments could be performed. Studying the effect of the fault indicators and methods according to the level of
fault present in the machine is important. Modification of the target vector to instead perform an iterative
path-finding approach may be researched as an improvement for machines under slightly varying rotational
speeds or for bearings with slippage. For machines with significantly changing speeds, the filter is expected
to change drastically as it does so - to better handle these cases, using target vectors designing filters to
deconvolving only a few sequential impulses at controlled positions while stepping through the signal may
be investigated to track the speed and fault level of specificelements. A comparison of fault identification
between MOMEDA, MEDA, MCKD, and non-deconvolution methodsis needed to help direct future work
as to which direction is more effective. Fundamentally, the fault indicators of Kurtosis, CK, Multi D-Norm,
and MKurt are all amplitude invariant and do not represent the magnitude of the impulses or their effect
on the measured vibration. Further research should be invested into studying the resulting designed filters
along with the magnitude of their result, and using this information to study the effect of the fault on the
vibration of the machine to perhaps better indicate the severity or characteristics of the fault.
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External Resources

Minimum Entropy Deconvolution MATLAB implementation (MED: overlapMode=’full’, MEDA: over-
lapMode=’valid’):
http://www.mathworks.com/matlabcentral/fileexchange/29151-minimum-entropy-deconvolution-med-1d-and-
2d

M-Shift Maximum Correlated Kurtosis Deconvolution (MCKD):
http://www.mathworks.com/matlabcentral/fileexchange/31326

Optimal Minimum Entropy Deconvolution Adjusted (OMEDA):
http://www.mathworks.com/matlabcentral/fileexchange/53482-optimal-minimum-entropy-deconvolution-with-
convolution-fix–non-iterative-solution-

Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA):
http://www.mathworks.com/matlabcentral/fileexchange/53483-multipoint-optimal-minimum-entropy-deconvolution-
with-convolution-adjustment–momeda-
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Appendix A. Normalized Multi D-Norm Derivation

Starting from the Unnormalized Multi D-Norm,

Unnormalized Multi D-Norm= UMDN(~y, ~t) =
~t T~y
‖~y‖
,

we introduce a normalization factork:

k UMDN(~y, ~t) = k
~t T~y
‖~y‖
,

We normalize Multi D-Norm to a value of 1 when the output~y reaches a multiple of the goal vector~t,
and solve for the normalization factor:

1 = k
~t T~t

‖~t‖
,

k =
1

‖~t‖
.

Therefore we use the normalized Multi D-Norm formula as follows:

Multi D-Norm =
1

‖~t‖
MDN(~y, ~t) =

1

‖~t‖

~t T~y
‖~y‖

Appendix B. Normalized Multipoint Kurtosis Derivation

Based on Kurtosis, we expand Kurtosis to instead consider multiple points controlled by target vector~t:

Unnormalized Multipoint Kurtosis= UMKurt(~y, ~t) =

∑N−L
n=1 (tnyn)4

(

∑N−L
n=1 y2

n

)2

We introduce a normalization factork:

Multipoint Kurtosis= MKurt(~y, ~t) = k

∑N−L
n=1 (tnyn)4

(

∑N−L
n=1 y2

n

)2
,

We normalize MKurt to a value of 1 when the output~y reaches a multiple of the goal vector~t, and solve
for the normalization factor:

1 = k

∑N−L
n=1

(

t2n
)4

(

∑N−L
n=1 t2n

)2
,

k =

(

∑N−L
n=1 t2n

)2

∑N−L
n=1 t8n

.

Therefore we use the normalized MKurt formula as follows:

Multipoint Kurtosis= MKurt(~y, ~t) =

(

∑N−L
n=1 t2n

)2

∑N−L
n=1 t8n

∑N−L
n=1 (tnyn)4

(

∑N−L
n=1 y2

n

)2
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