Multipoint Optimal Minimum Entropy Deconvolution and Cariution Fix:
Application to Vibration Fault Detection

Gedf L. McDonald®*, Qing Zha&

aAnti-Virus Researcher, Microsoft Malware Protection Center, Microsoft, Vancouver, British Columbia, Canada
bAdvanced Control Systems Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton,
Alberta, Canada

Abstract

Minimum Entropy Deconvolution (MED) has been applied ssstdly to rotating machine fault detection
from vibration data, however this method has limitationscolvolution adjustment to the MED definition
and solution is proposed in this paper to address the disciyt at the start of the signal - in some cases
causing spurious impulses to be erroneously deconvolveaoBlem with the MED solution is that it is an
iterative selection process, and will not necessarilygtean optimal filter for the posed problem. Addition-
ally, the problem goal in MED prefers to deconvolve a singipulse, while in rotating machine faults we
expect one impulse-like vibration source per rotationaiqokof the faulty element. Maximum Correlated
Kurtosis Deconvolution was proposed to address some of gheblems, and although it solves the target
goal of multiple periodic impulses, it is still an iteratimen-optimal solution to the posed problem and only
solves for a limited set of impulses in a row. Ideally, thelpemn goal should target an impulse train as the
output goal, and should directly solve for the optimal filtea non-iterative manner. To meet these goals,
we propose a non-iterative deconvolution approach callatlipbint Optimal Minimum Entropy Deconvo-
lution Adjusted (MOMEDA). MOMEDA proposes a deconvolutipmoblem with an infinite impulse train
as the goal and the optimal filter solution can be solved faratly. From experimental data on a gearbox
with and without a gear tooth chip, we show that MOMEDA anddiéeonvolution spectrums according
to the period between the impulses can be used to detecs faudk study the health of rotating machine
elements fectively.

Keywords. Gearbox, Fault detection, Minimum entropy deconvolutiditoration, Rotating machine,
Deconvolution

1. Introduction

Rotating machines are a common piece of equipment with Ggdjiins such as power generation tur-
bines, centrifuges, helicopters, washing machines, ang.mbBault detection is often focused on their
components such as gears, bearings, or their shafts. Niogitthese machines and their components by
collecting vibration or acoustic emissions can be used gopaondition-based maintenance planning [1],
can detect faults as they start to develop to reduce furtherade [2], or help diagnose already-developed
faults [3].
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Some of the common fault detection methods include Wavetsform-based methods [4, 5, 6], Spec-
tral Kurtosis [7, 8, 9], modeling approaches [10, 11, 12,143,15], Cyclostationary analysis [16, 17], and
deconvolution-based methods [18, 19, 8, 20]. Often thedhade are combined together [19, 8], and are
often used in conjunction with machine learning as feattoedentify faults [3, 21, 22, 23].

In this paper we will be focusing on the deconvolution methadd their application to rotating machine
fault detection. Deconvolution approaches are based onidgfa measure of a signal, often referred to as
a norm, then a FIR filter is designed such that the filtereduiwtipration reaches a maximum according to
the norm. Minimum Entropy Deconvolution (MED) was propo$sdR. A. Wiggens in 1978 for seismic
recordings as an iterative selection procedure for a filteickvaimed to maximize the Kurtosis norm of
the filtered output signal [24]. Kurtosis is a feature thalaiger for impulse-like signals, and the author
successfully applied MED to reconstruct the impulse-likarses from measured seismic recordings. Re-
alizing that many rotating machine fault types are expetiduave impulse-like fault sources, in 2007 H.
Endo et. al. [19] first demonstrated MED'fectiveness when applied to rotating machine fault detectio
[19], and the method has been applied to rotating machirts fauccessfully in multiple studies since then
[8, 25, 5, 18, 20]. Despite the successful results with MHEi2ye are several major drawbacks. Firstly,
MED is optimizing the norm Kurtosis which prefers a solutimima single impulse. For rotating machines,
we instead expect a series of periodic impulses-like featas fault vibration sources. Secondly, MED is an
iterative approach that involves iteratively finding a gdittér solution. Ideally, we would be able to solve
for the solution directly. Lastly, MED selects a ‘good’ stidun and not necessarily the optimal solution to
the posed maximization problem.

To address some of the limitations of MED, in 2012 a new degloion problem called Maximum
Correlated Kurtosis Deconvolution (MCKD) was proposedéolaen an introduced Correlated Kurtosis
(CK) norm [20]. This problem was designed to deconvolveqaiic impulses separated by a known period.
Although this partially addressed the need for a periodjoLilse deconvolution goal, it was still an iterative
procedure, selected a ‘good’ filter solution (not optimedjjuired priori knowledge of the fault period, and
for non-integer fault periods required an additional reglimg preprocessing stage. The computational cost
of designing the filter was expensive, meaning spectruntsagossible fault periods were not practical.

In 1984, C. A. Cabrelli proposed a similar deconvolutionijeon to MED using a norm called the D-
Norm - which we call Optimal Minimum Entropy Deconvolutio®¥ED) [26]. It was demonstrated that
OMED is geometrically similar to MED. But unlike MED the desmlution problem was shown to have
an exact optimal solution for the filter solution without theed for an iterative process. The underlying
solution maximally deconvolves a single point impulse ia fignal with respect to the rest of the signal.
In this paper, we show that although OMED is able to solve lier aptimal solution to its problem, this
solution performs worse in rotating machine fault detectitan MED - likely as a result of its even greater
preference to deconvolve only a single impulse solution.

We propose an adjustment to the convolution definition ugethb MED and OMED problems to
remove a discontinuity between the assumed-zero inputkigmd the start of the input signal. If not
adjusted for, these algorithms tend to erroneously dedesve single impulse at this discontinuity. We
recommend using these adjusted solutions going forwarah\whecessing rotating machine vibration data.

Addressing the limitations of MED, OMED, and MCKD in applin to rotating machines, we pro-
pose in this paper a new deconvolution method called Muhig@ptimal Minimum Entropy Deconvolution
Adjusted (MOMEDA). With MOMEDA, a target vector defines tliehtion and weightings of the impulses
to deconvolve - allowing for periodic impulse train decolution target goals that are well-suited to the na-
ture of rotating machine faults of a single impulse-likeraifion source per rotation. MOMEDA has a
non-iterative optimal solution directly for the filter, so iterating is required for filter selection. Sets of



target vectors can be solved simultaneously, allowing fecgums of fault condition versus period ana-
lyzed to be plotted. Unlike MCKD, MOMEDA works with non-irger fault periods without a resampling
stage. Finally, we show using simulated data and experahelatta from a gearbox with and without a
gear chip fault that MOMEDA can be used textively detect the presence of faults in rotating machines
Experimental results are compared for MED adjusted, OMEDsteld, MCKD, and MOMEDA; each with
and without auto-regressive model prediction residugbqaeessing.

In Section 2 we will provide background on existing decontioh methods MED, MCKD, and OMED.
For MED and OMED we propose the convolution adjustment tdhiixdiscontinuity that can cause spurious
impulses to be deconvolved. In Section 3 we present the MOMRblem formulation and solution for
a single target vector goal. Next in Section 4 we demonstrate periodic impulse train targets can be
proposed and how MOMEDA can be used to solve for a set of smugjptultaneously to generate a fault
spectrum according to the period of the fault. Experimemtsililts are presented in Section 5 from a gearbox
setup with and without a gear tooth chip before presentingconclusions and future work suggestions in
Section 6.

2. Background and Convolution Adjustments

2.1. Minimum Entropy Deconvolution

At the core of MED in rotating machine fault detection is dmaéng a filter that extracts the periodic
impulse-like features associated with some faults. Givearapled vibration signal composed of multiple
components:

h *Cf+hd*d+he*é

whereX is the measured machine vibratiahis unknown input responsible for the system dynarm'Tcs,
is an impulse train modeling a fault, agds white noise. The characteristic respon$gsh, he, generally
represent the system dynamics, vibration transmissionspaind characteristics. Figure 1 illustrates an
example of how these components may present in a rotatingingander fault.

Kurtosis is large for a single impulse and the fault compd),neTnis a signal of high Kurtosis when
compared to the other signal components. As a result, it $ufded that selecting a finite length filter
f’to maximize the Kurtosis may design a filter that approximyagxtracts the high Kurtosis source fault
impulses with a time shift, while minimizing the low Kurtesystem dynamics and noise components. This
Kurtosis maximization problem under assumed zero mearugyigs described as follows:

IR
maxkurtosis= max——"—+-"— Zn-1 -
f f (Zn 1Yn)
X1 Y1 fy
< X2 g Y2 e fa ,
XN YN fL
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Figure 1: Overview of the signal components in a simple nogatachine vibration signal
With convolution definition of output length equal to the ingength:
y=fxx

L
Vo= fiXcrns, k=12...,N, %=0for n#12.. N
=1

Or in matrix form:

y=X .
X1 X2 X3 ... ... XN
0 X1 X2 ... ... XN-1
)zo: 0 0 X ... ... XN-2
0 O O ... ... Xn-L+1 Lby N

The iterative MED filter selection picks a ‘good’ solutionttés maximization problem, not necessarily
the optimal solution. The iterative selection method iswa& by taking the derivative, equating it@pand
iteratively solving forf. The iterativef selection as derived by Wiggens is described as:

N 2 4
= —gNi)yA (g) %o[v2%3 - R (1)

Starting with a centered initial flerence filter guess of = [0,...,0,1,-1,0,...,0], Eq. 1 is repeat-
edly applied to calculate filtef, and this new filter is used to calculate the updated oufphefore each
iteration. Termination is typically defined as either a nembf iterations [20], or a minimum change in
filter codticients between iterations [19]. Kurtosis of the resultingpot is often used as a measure of fault.
An implementation in MATLAB is available in the External Resces Section.

Several problems with MED exist in application to rotatingahine fault detection. If a large filter
lengthL is chosen, MED can design a filter to approximately extradhgle impulse even from a white
noise signal, often referred to as a spurious impulse. Sped-R illustrating this issue when deconvolving
a single impulse from 1000 samples of Gaussian white noided®0 sample filter length. Mitigations
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a) Gaussian white noise

b) MED applied to gaussian white noise with filter length 100, iterations 10

100 200 300 400 500 600 700 800 900 1000
Sample number

Figure 2: Applying MED to Gaussian white noise yields a sindéconvolved impulse. a) Zero-mean Gaussian white naise, a
corresponding b) MED outputsignal with filter sizeL = 100 and 10 iterations.

include selecting smaller filter lengtlhsor terminating the iterative selection early before thisison can
be reached.

Another problem is that the solution to MED is iterative analymot correspond to an optimal solution.
Fault indication performance may vary depending on theitetion condition. In some cases, the resulting
signal more closely extracts the periodic fault signal atarier termination condition [20].

MED is posing a deconvolution proposition that is not waidkpd for rotating machine faults. While
MED is prefers to deconvolve a single impulse (maximum Ksig) in rotating machine faults we are
looking to deconvolve an impulses train with one impulse nagation of the faulty element. In the next
section we will briefly review our previous work to adjust ttheconvolution problem to be better suited for
rotating machine fault detection.

2.2. Maximum Correlated Kurtosis Decorvolution
In 2012, MCKD was proposed [20] to iteratively deconvolveesies of impulses using the proposed

norm CK:
St (YnYn-T)?
(ZhL, y3)2
2
rl:l=1 (Hm:o Yn—mT)

N, yaM+

whereM is the number of sequential impulses that are to be decoaw@ndT is the period of separa-
tion for these impulses. The deconvolution is posed sitgitarMED as:

Correlated Kurtosis of First-Shit CK{(T) =

’

Correlated Kurtosis of M-Shift CKy(T) =

Zrl}lzl (Hm=o Yn—mT)2
(Zheg YoM+

It has an iterative selection procedure to select a gﬁadning to maximize this problem. Although
MCKD was found to improve deconvolution results in simutaend experimental data by deconvolving
a series of periodic impulses [20], it has many limitationsluiding still being an iterative algorithm, not

MCKDwm(T) = maxCKu(T) = max
f f
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solving for the optimal solution to the posed problem, anly &eing able to deconvolve a small series of
impulses in a row as opposed to an infinite train of impulses.

2.3. Minimum Entropy Deconvolution with Convolution Adjustment

Application of MED to rotating machine data should useféedént convolution definition that reduces
the tendency to deconvolve a single impulse at the starteobtiput signay. With the definition of MED,
the convolution definition assumes zero dataXgr= 0,n < 1, which creates a discontinuity between
assumed zero samplg and the first sampl&;. In the original proposed application of MED to seismic
recordings [24], the data at the startsdfvere generally close to 0 and this definition was not a siganitic
issue. However, in application to rotating machine vilmnatihis can cause a significant disturbance to be
identified between samples observedk@and x; - causing a spurious impulse to be deconvolved at this
location or withinL samples of it due to a delay.

H. Endo et. al. [19] proposed applying an AR model residuappcessing before applying MED to the
vibration signal (AR-MED), and this added step partiallytigates this discontinuity. Instead, for rotating
machines the MED convolution definition should be adjustedrtly consider the output range without use
of any zero-assumed input data:

L
Yo=Y fiXerr, k=12 N-L+1
=1

Or in matrix form:

_yT{
y=xTf
XL XL+1 Xi+2 -o. ... XN
XL-1 XL XL+1 oov o.n XN-1

Xo = XL—2 Xp-1 XL e e XN-2
X1 X2 X3 XN-L+1 L by N-L+1
Resulting in the MED adjusted (MEDA) iterative selection:
D YV -1 T
f= SR (60X5) %oy y3 - Vi
Zn:l n
This is solved iteratively similarly to MED. First seleét= [0,...,0,1,-1,0,...,0], then iteratively
solve the above equation recalculatifigising the new filter for each iteration. An implementation in
MATLAB is available in the External Resources Section. Fé&g8 demonstrates how MED deconvolves

a spurious impulse at the discontinuity, how AR preprocggsihitigates the spurious impulse, and how
MEDA achieves a similar result as AR-MED.

2.4. Optimal Minimum Entropy Deconvolution

In 1984, Carlos A. Cabrelli [26] proposed a new norm towardsothvolving impulses called the D-
Norm, and geometrically demonstrated the deconvolutiablpm’s similarity to the MED problem. The
proposed D-Norm deconvolution problem has an exact noatite solution to solve for the filter cée
cients. We refer to this method as Optimal Minimum Entropyc@eolution (OMED) for its similarity
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a) MED and MEDA applied to simulated fault signal
/ Discontinuity

Xt
X, =0,n<1
Spurious impulse
MED(x,): —
- An PN NGV PN
MEDA(X,): WMN&/VWMMV\W«WMWM

L I I I I
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b) AR-MED using 10th order AR model applied to simulated fault signal

ARCx): %WM\VMWWWWNV\MWVM\MMM
AR-MED(x,): WWWWWWWWMWM

Il Il
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Sample number

Figure 3: a) MED, MEDA, and b) 10th order AR-MED applied to gergence with filter lengt. = 50 andN = 1000 input
samples of simulated data. The first 10 samples were distander to MED and MEDA processing to align the AR model
residual signal withx, for better illustration.



to the Minimum Entropy Deconvolution problem, and optimat the problem’s ability to solve for the
optimal solution.

The D-Norm maximization problem is formulated as the follogy

1Ykl
D-Norm = D(y) = k:TzaXN H_Vll

| ) Ikl
OMED : s?pD(V) = S?p(k=T2?.).(,N IIVll)’

It is sufficient to first solve forf over eactk, then select théﬁcorresponding to the maximum D-Norm:

Iyl
supD(y) = max [SUP—]-
- k=12..N-L| 2 Iyl

To find the maxima and minimas, this idi@irentiated with respect to the filtérand solved td:

d [y ) 5
(22X = 2
df*(lMl @)
Instead of following Cabrelli's OMED convolution definitiawith x, = 0, n < 1 assumptions, we follow
a similar procedure using the modified convolution definifiorming Optimal Minimum Entropy Deconvo-

lution Adjusted (OMEDA). This convolution adjustment isrpeularly important for OMED, otherwise it

has a tendency to deconvolve the discontinuity - which isanetal vibration feature. From the convolution
definition:

L
yk:Zf|Xk+L—|a k:1,2,...,N_L,
1=1

it follows that the derivative is

d
d—);:( = XktL-I-

Since the following is true,

diyil 4N
af = ||| kZ;YkaJrL—l,

it follows that Eq. (2) expands as

d ( Vi ) X I = Yl R Vi L1
dfi \ Iyl Y112
;
XL
-1 _g| X1
= X LI = YKV Y 3)
XN

and converting Eq. (3) to matrix form for= 1,2, ..., L and solving td0 we have:
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d%(ﬁ) — IS My = 91 PyXoy = G, @)

IVl
Xic+L-1
M, = Xk+.L—2
X
Sincey = Xg f and by rearranging we have:
”§/7|_k|2X°xCT’ f= M

(xoxg ) is the unnormalized Toeplitz autocorrelation matrixXafith no assumed-zero data. Assuming
the inverse exists, we have:

>

i f = 00x) M (5)
We observe that if is a solution to Eq. (5), then any multiple is also a solutibr; cf:
y=cXof =cy

el = 0x0g) Wi

c2lIyli®

Therefore multiples of)(()XcT))‘l My are non-trivial solutions fof. We pick the solution:

= (XoXg) M (6)

Finally, we need to solve for all thé€ solutions acros& = 1,2,...,N — L. Expanding Eq. (6) for
k=12...,N—Lwe have an array of possibfesolutions,F = [F_’l, Fo ..., F_’N_L], which simplifies to:

F = (XoXg) X0
Resulting in the array of possible outpits= [Y1, Yz, ..., VL]

Y = X3 (XoX5) X0

Then the OMEDA solution forf is the column inF corresponding to th& column with maximum
D-Norm. An implementation of OMEDA in MATLAB is available ithe External Resources Section.

Each potential output solutioWy represents deconvolving only a single impulse at outputpsamy
maximally. The end result of selecting the output maxingzihe D-Norm overYj is selecting the filter
that best extracts any single-point impulse while minimjzthe amplitude of the rest of output. This
solution, although it is the optimal solution to a similaoplem to the MEDA maximization problem,
tends to particularly prefer to deconvolve only single ingps over the expected periodic fault impulses.
Consequently, OMEDA often is not as useful as MEDA. CommgaWEDA to OMEDA, Figure 4, we can
see OMEDA is able to successfully deconvolve the goal of glsimpulse using a smaller filter size than
MEDA.

Although OMEDA generally under performs in comparison to [IMEin rotating machine fault ex-
traction, it is an important building block towards the goélsolving for an optimalfﬁthat is solved for
non-iteratively to extract periodic fault impulses.
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Fault + noise
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Fault + noise +

harmonic
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Figure 4: MEDA and OMEDA applied to a simulated fault sigfdEDA is iterated to convergence, while OMEDA solves for the
optimal solution.

3. Multipoint Optimal Minimum Entropy Deconvolution

For rotating machine fault detection, we propose a decatiool target of multiple impulses at known
locations - as opposed to a target of a single impulse. Wedntre this maximization problem as Multipoint
Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA):

1Ty

IItTI Iyl

£T

MOMEDA : maxMDN(yf) maxm7||

Where the target vectof, is a constant vector that defines the location and weightofgthe goal
impulses to be deconvolved. For example,

Multi D-Norm = MDN(Y, f) =

()

-[ooo0o100010 0

the above'will aim to deconvolve two impulses in the output signal: imgulse ain = 4 and the other
atn = 8. With this level of control, the target vectBcan be used to control the separation, location, and
windows for the impulses to be deconvolved. The absoluteev discarded to require the deconvolved
impulses to match in polarity - which is expected in rotatingchine faults. This is a simpler problem than
OMEDA, since no iteration through an array of solutions dverl,2,...,N — L is required.

This Multi D-Norm is normalized to between 0 and 1, where aigabf 1 indicates that the optimal
target solution was reached. In Appendix A the derivatioth@éf normalization factor is provided. This
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normalization is important such that fault indicators frdifferent fault periods or signals withftérent
sampling rates can be comparable to one another in fauttatidn level.

Following a similar derivation as OMEDA, we solve the extesof Eq. (7) by taking the derivative
with respect the filter cd&cients, f= f1, fo, ..., L

d fTV) dtyr dty d tN-LYN-L
— ==+ ...+ —— 8
df*(llw df Ml af IVl df IV ®

We already solved the derivative for each of these terms mopthe OMEDA derivation, Eq. (4), so
we know:

d teyk =] -3
— 2K t My — t
o] It Mk — [IVII ™tk XoY
Xk+L-1
Mk _ Xk+.L—2
Xk
Therefore Eq. (8) can be written:
d (f'y -1 -3¢T
arlmi) = IVl (t1|\7i1+t2|\7i2+---+tN—L|\7iN—L)—||)7|| " yXoy 9)

With the simplification,
t1|\7i1 + t2|\7i2 +...+ tN—LMN—L = Xot_:

and solving for extremas by equatinngEq. (9) becomes:

IV~ %oE — I3 yXoy = O

T

t >
Y oy = Xot
1112 y
Sincey = X{ f'and assuminﬁxoxg)_1 exists:

_1— —
||t37|_|yz = (%oX) " Xof (10)

. . - . . o -1, 5 .
Since multiples off are also solutions to Eq. (10), multiples b= (xoxg) Xot are solutions to the
MOMEDA problem. In summary, the MOMEDA filter and output stiduns are calculated simply as:

F= (XoXg) ™ Xa.

XL XL+1 X422 eee e XN
XL-1 XL X4l eve e XN-1
Xo = Xi—2 XL-1 XL e e XN-2 ,
X1 X2 X3 cee eee XN-L+1 L by N-L+1
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y=Xf
Where the target vectdiis the same length as the outpiit £ L + 1), and represents the location and
weightings at which to deconvolve impulses in the outputis®olution can be described as simply the

. . . L , . -1
inverse of the unnormalized Toeplitz autocorrelation matf X with no-assumed zero |an(txoxg ) ,

multiplied by the filtered signat=t’to yield the optimal filterf solution for MOMEDA. An implementation
of MOMEDA in MATLAB is available in the External Resourcesdien.

Controlling the locations of the multiple impulses to be alamlved along with MOMEDA's non-
iterative optimal solution provide the basis for a machirsydosis tool. In the next section we will present
how the target vector selection can be used to analyze aratajerspectrums to identify faults in rotating
machines.

4. Target Propositioning and Fault Indication

For rotation machine fault detection with MOMEDA, solutitargets of impulse trains separated by a
proposed fault period should be considered:

th = Pn(T) = Sround(r) + Oround(2r) + Oround(3r) + - - -»

= B(T),

wheres, denotes an impulse at sampie Non-integerT should be considered and for each impulse
position rounded to nearest position, since in reality thétfperiod is unlikely to coincide exactly with a
multiple of the sampling period. If > T the time-domain location of the fault impulse trdidoes not
need to be swept across all position shifts, since the dedifiter can adjust in time delay to the necessary
position. Usage of filter lengths less than the fault perlod, T, is not discussed in this paper, but can be
implemented by shifting the target vector at multiple dosis and selecting the best match.

Figure 5 plots the result for MEDA versus MOMEDA for a simedtfault signal, where in this case
we have increased the noise to raise the deconvolutibicudty. Due to the larger filters sizes and higher
noise level, MEDA is only able to extract a single impulse a@tle case, while MOMEDA deconvolves the
periodic fault impulses. Note that in the casd.of 500= N/2 the filter length is equal to the length of the
output signal/ resulting in MEDA and MOMEDA being able to exactly deconwhheir optimal goals.

MOMEDA can be calculated for a spectrumNMftarget vector candidatds t, ..., ty by:

- - - -1 o > o
F:[ fl f2 f|\/| ]Z(Xoxg) Xo[tl t2 tM ]
Y=[% ¥ ... 9w |=XF
We introduce Multipoint Kurtosis (MKurt) to use as a measoiréault:
Y
(Zrl}lzll_ t%) Zrl:lz_ll_ (tnyn)4
N-L 2
Zno1 B (Zr’:‘:—l'- yﬁ)

This definition is based on Kurtosis, however it has been mdpa to multiple impulses at controlled
locations according to the target vector and is normalizeth shat it reaches a value of 1 if a solution in
the direction off’is reached. See Appendix B for the derivation of the norratibin factor.

Multipoint Kurtosis=
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a) Simulated fault signal

Fault signal (T=50) %W%}FH—#—F
Fault signal + noise
(SNR = 0.46)
xn = Fault signal +

noise +

harmonic ‘ ! ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 200 400 600 800 1000
b) MEDA filtered output c) MOMEDA filtered output, t,=P,(50)

iy

L =100 ugidihbrbihostp s oiipon L =100
L 200 L = 200
0 200 400 600 800 10000 200 400 600 800 1000

Sample number Sample number

Figure 5: a) A simple simulated signal with a faultTat,: = 50 under strong noise, b) MEDA-filtered output after itergtto
convergence, and c) MOMEDA-filtered output.
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a) Faulty signal MOMEDA MKurt spectrum

Fault
T=50

75 100 150 200
Ll t = | — — : :
0 20 40 60 80 100 120 140 160 180 200

b) MOMEDA MKurt spectrum of the same signal without fault

MKurt

40 60 80 100 120 140 160 180 200
T (samples)

Figure 6: MOMEDA spectrum with a step afT = 0.05 and a filter length of = 200, applied to a simulated fault signal seen in
Figure 5 of periodl' = 50 and lengtiN = 5000 for a) a faulty signal under strong noise, and b) the sagmal without the fault.

Using a spectrum of periodic impulse train target vectoas #iep over a range of periods, and plotting
the MKurt result produces a spectrum that can be used toifigéatlts. Figure 6 plots the spectrum from
T =2toT = 220 with a step oAT = 0.05 for the same simulated fault signal under heavy noisdtiRio
the spectrum allows for clear identification of peaks cqroesling to the fault period of 50, along with its
multiples, factors and factors of the multiples (eg 75 beirfgctor of I = 150). From this spectrum, it
is clear that MOMEDA is able to flierentiate between the faulty period and its related fadtors the
surrounding non-fault periods.

When working with experimental data, it was found that fartbxtending the target vectay by intro-
ducing a windowing may improve the spectrum clarity. By agda windowing function, a tolerance for
bearing slippage or slight machine speed variations isvelibfor and larger period stepST, can be used.
For example,

£=1[1,1,1,1,1] = P(T)

The abovef’introduces a rectangular window function. This window fiimie is not studied in this

paper, and an empty window of [1] is used for all processinge Mext section presents results from an
experimental setup with a seeded fault.

5. Experimental Results

Experimental results are compared for a gearbox with anbowtta seeded gear tooth chip from an
experiment performed by X. Tian et. al. [27]. This data hasnbesed previously in other machine fault
detection studies [4, 20].

The experimental setup, Figure 7, includes a motor, geardaat loading break. Gear 1 is switched
between a healthy gear and a faulty gear with a seeded toigtfiocclcomparison. The rotational frequency
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Figure 7: Machine setup for a seeded gear tooth chip expetjrapd Gear 1 with the seeded tooth chip. [20]

Gear 1 with Chipped tooth

of Gear 1 is varied from 10 to 40 Hz at 5 Hz intervals, and foheaandition two recordings are performed.
A PCB 352C67 accelerometer is attached to the machine ¢asidgsampled at rates of 2560 and 5120 Hz
depending on the rotational frequency. 8192 samples aceded per measurement. Since there was no
direct measurement of the rotational speed of Shaft 1, ttatiooal period of Gear 1 is estimated for each
vibration signal by peak finding on the MOMEDA MKurt spectrumithin £20 samples from the expected
period at a step of 0.05 samples. The period corresponditigiggeak is used as the rotational period.
Table 1 illustrates the characteristics and calculateddpa each measurement under each condition.

Table 1: Measured vibration signals and estimated periods

Dataset| Fs(Hz)  Ttaut (samples) Theathy (Samples)

10Hz #1 | 2560 273.35 260.95
10Hz #2 | 2560 273.35 260.95
15Hz #1 | 2560 177.52 173.32
15Hz #2 | 2560 177.47 173.32
20Hz #1 | 5120 263.55 259.25
20Hz #2 | 5120 263.55 259.20
25Hz #1 | 5120 209.65 207.05
25Hz #2 | 5120 209.60 207.05
30Hz #1 | 5120 174.22 172.37
30Hz #2 | 5120 174.17 172.37
35Hz #1 | 5120 148.99 147.64
35Hz #2 | 5120 149.09 147.64
40Hz #1 | 5120 130.40 129.10
40Hz #2 | 5120 130.45 116.20

Figure 8 illustrates the relationship between filter lenbththe fault metric MKurt, and the MKurt
difference between healthy and faulty states at each setuptioandDnly filter lengths ofL equal to or
larger than the Gear 1 rotational period were considere@dach vibration measurement. Under all filter
lengths and machine conditions, the MKurt value under feudte larger than the values under healthy
condition. A filter length ofL = 500 is chosen for the rest of the results as a balance betlwednwer
variance associated with smaller filter lengths, and hidKurt difference associated with larger filter
lengths.
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Figure 8: MOMEDA fault detection results versus filter lemgt

For the first measurement of the machine vibration at 40 Hmr€i 9 illustrates the faulty and healthy
MOMEDA MKurt spectrums, inputs, outputs, and designed Higr by MOMEDA. In both the faulty and
healthy vibration measurements there is a strong peakdlidemtifiable at the gear period, however under
faulty conditions the peak is larger in magnitude. The preseof a peak even under healthy condition is
not unexpected, since factors such as non-uniform foroedmst the gears as the teeth mesh may cause
features that can be deconvolved. Figure 10 illustratespketrums of all measurements under faulty and
healthy conditions.

To compare MOMEDA to the other deconvolution algorithms émdtudy the impact of AR-model
residual preprocessing, we compare the following methods:

MED Minimum Entropy Deconvolution

AR-MED Autoregressive Minimum Entropy Deconvolution

MEDA Minimum Entropy Deconvolution Adjusted

AR-MEDA Autoregressive Minimum Entropy Deconvolution Adjusted

MCKD3 Maximum Correlated Kurtosis Deconvolution 3rd Shift

AR-MCKD3 Autoregressive Maximum Correlated Kurtosis Deconvolutod Shift

MCKD5 Maximum Correlated Kurtosis Deconvolution 5th Shift

AR-MCKDS5 Autoregressive Maximum Correlated Kurtosis Deconvolutioh Shift

OMEDA Optimal Minimum Entropy Deconvolution Adjusted

AR-OMEDA Autoregressive Optimal Minimum Entropy Deconvolution Asfied

MOMEDA Multipoint Optimal Minimum Entropy Deconvolution Adjusie

AR-MOMEDA Autoregressive Multipoint Optimal Minimum Entropy Decatution Adjusted

For parameter selection of the MCKD and MED-based algosthwe used the same deconvolution
iteration count and auto-regressive model parametersidiedtpreviously with this experimental data [20]:

e Termination condition: 100 iterations. This is chosen agdanumber to approximate convergence.
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Figure 9: Faulty and healthy MOMEDA MKurt spectrums, measuvibrations, MOMEDA filtered outputs, and MOMEDA-
designed FIR filters for the first measurement of the machid@ &1z using a filter length of 50@, = 500.
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Figure 10: MOMEDA MKurt spectrums for vibrations measurgdvith and b) without a gear tooth chip. A stepsT = 0.05
and filter length olL = 500 is used.

¢ AR model order: 40% the number of samples in a single rotation

We found that using the smaller filter lengths for the MED andHD-based methods (80% the number
of samples in a single rotation) and comparing to the londter fength results for MOMEDAL = 500)
did not fairly represent the non-MOMEDA based methods.dadf we found the MED and MCKD-based
methods had better fault indication performance using er figngth ofL = 500 and therefore we instead
used this filter length with all methods for fair comparison.

Fault indicators vary across methods. MED proposes usintpKis as the fault indicator, MCKD pro-
poses using Correlated Kurtosis (CK), and MOMEDA uses MKimtcompare fault metrics, we analyzed
the fault indication performance of all deconvolution neeth using each fault metric of Kurtosis, third-shift
CK, Multi D-Norm, and MKurt. To compute Multi D-Norm and MKufor output signals we calculate the
maximum result for all shifts of the target impulse train atep ofAT = 0.05 where the period of rotation
of the faulty gearTqesr, Separates the impulses:

Peak Multipoint Kurtosis= max MKurt(y, ts)
S=L1+AT.1+2AT, .. Tgeer

Peak Multi D-Norm= max MDN(Y, to)
S=L1+AT,1+2AT,..., Tgear

R
ts = 5round@+Tgear) + 5round@+2Tgea,) + 5round@+3Tgea,) +...

For better illustration, we adjusted the scale of the tsldt CK by taking the cubed root of this feature.
We processed the faulty versus healthy conditigfedence between each fault indicator for each recorded
signal. Figure 11 plots this fault indicationfidirence along with the means, standard deviations, and 95%
confidence intervals. Statistical significances betweemikan fault indication ierences are evaluated
by a one-way repeated measures analysis of variance (AN@Nw@)Tukey’s honest significance test and
considered significant ib < 0.05. From this, we draw several observations:

¢ MOMEDA is able to indicate the fault when using any of the fantlicators. We can not say that
the fault detection performance is necessarily better as&n fault detection compared to other
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Figure 11: Experimental fault indicationfiérence between faulty and healthy conditions for the manketthods with raw dfer-
ence data markers, means, standard deviation boxes, andd@Bidence intervals.
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methods. A larger fault indicator ffierence does not necessarily translate to a better algogérm
formance. Ideally, a good fault indication algorithm woutdicate a small fault metric increase by
a similar amount regardless of machine rotational speeatittda metric would increase in value as
fault level increases. Too large of a fault indicatoffelience in our results could indicate a lack in
sensitivity to detect the ffierence between the level of the fault present in the machine.

e AR model preprocessing did not have a clear positive fauéa®n result when using Kurtosis, CK,
or MKurt fault indicators on any method. When using the MDitNorm fault indicator, it appears to
have improved the MED and MEDA algorithms but decreased émfopnance of the MCKD3 and
MCKD5 methods. We could not identify a statistically sigcdfint éfect on fault indication perfor-
mance by preprocessing with AR models. There may be a signdecthat could be detected with a
larger sample size, or it may have more of &ieet on diferent fault types, machine configurations
or equipment setups.

e Although MEDA had a higher meanftiirence than MED when using the Kurtosis fault indicator,
this difference was not found to be statistically significant. A lasgganple size may be able to detect
if there is a significance. We suggest using MEDA over MED asititere are some measurement
conditions, such as measurements that have larger lowdrmy components or DCffgets, that
would cause MED to erroneously deconvolve the discongnuit

e Care needs to be taken when selecting and comparing theirfdidators for each deconvolution
methods. Performance of each methadeds according the fault indicator studied.

6. Conclusion

In this paper, we introduced a new deconvolution-based odathlled MOMEDA for detecting faults in
rotating machines. The introduced MOMEDA method has adged over the previous applied deconvo-
lution methods of MED and MCKD, since it provides a solution the filter that is an optimal solution, can
be solved for directly (non-iteratively), and the targealja the problem more closely matches the expected
fault dynamic sources of an infinite impulse train. By sirankously solving for a range of impulse-train
period targets, we proposed a spectrum analysis approied 88OMEDA MKurt spectrum that can be
used to identify faults in rotating machines. We applied MEDA and the resulting MKurt spectrum
to successfully dierentiate between faulty and healthy condition in both $ated data and data from a
gearbox with chipped tooth experiment.

We proposed a correction to MED called MEDA. The correctidjusts the convolution definition to
remove the input discontinuity. As a result, this resoh@®s spurious impulse deconvolution issues faced
when applying MED to rotation machine signals. We recommasidg MEDA over MED going forward
to improve reliability, especially when dealing with si¢gmavith lower frequency components with respect
to the sampling frequency.

When comparing the ffierence in the fault indicators between healthy and faulbditmns, we found
that using filter lengths larger than the period of the famipioved the fault detection results of MED,
MEDA, OMEDA, and MCKD methods. Restricting to filter lengtbisorter than the fault period should not
be considered a requirement, and can limit the fault ingingterformance of the methods.

In our experimental results, we found no statistically gigant difference for fault detection by pre-
processing with AR models prior to applying any deconveolutmethod. There may still be affect on
different machine configurations fidirent fault types, or there may be dfdience that could be detected
if a larger number of measurements were studied. Until tifer@nce is demonstrated as significant and

20



positive, the need to preprocess data with AR models befilyiag deconvolution remains unproven and
perhaps not necessary.

As further work, application of MOMEDA to more experimentadtups, fault types, and machine ele-
ments could be performed. Studying tHeeet of the fault indicators and methods according to the lafve
fault present in the machine is important. Modification af target vector to instead perform an iterative
path-finding approach may be researched as an improvemengtfthines under slightly varying rotational
speeds or for bearings with slippage. For machines withifiggntly changing speeds, the filter is expected
to change drastically as it does so - to better handle thesgscasing target vectors designing filters to
deconvolving only a few sequential impulses at controlledioons while stepping through the signal may
be investigated to track the speed and fault level of speglifiments. A comparison of fault identification
between MOMEDA, MEDA, MCKD, and non-deconvolution methasiseeded to help direct future work
as to which direction is mordlective. Fundamentally, the fault indicators of Kurtosi&, ®ulti D-Norm,
and MKurt are all amplitude invariant and do not represeatrttagnitude of the impulses or theifect
on the measured vibration. Further research should betet/@sto studying the resulting designed filters
along with the magnitude of their result, and using this linfation to study the féect of the fault on the
vibration of the machine to perhaps better indicate therigvar characteristics of the fault.
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External Resources

Minimum Entropy Deconvolution MATLAB implementation (MEDverlapMode-"full’, MEDA: over-
lapMode=valid’):
http//www.mathworks.cormatlabcentrafileexchang®9151-minimum-entropy-deconvolution-med-1d-and-
2d

M-Shift Maximum Correlated Kurtosis Deconvolution (MCKD)
http//www.mathworks.corfmatlabcentrafileexchangf1326

Optimal Minimum Entropy Deconvolution Adjusted (OMEDA):
httpy/www.mathworks.cogmatlabcentrafileexchanggb3482-optimal-minimum-entropy-deconvolution-with-
convolution-fix—non-iterative-solution-

Multipoint Optimal Minimum Entropy Deconvolution Adjusi§MOMEDA):

http//www.mathworks.corfmatlabcentrafileexchang#3483-multipoint-optimal-minimum-entropy-deconvadur-
with-convolution-adjustment—-momeda-
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Appendix A. Normalized Multi D-Norm Derivation

Starting from the Unnormalized Multi D-Norm,

eT
Unnormalized Multi D-Norm= UMDN(Y, f) = ﬁ
we introduce a normalization factlr
kUMDN(Y, ) = k”)7||

We normalize Multi D-Norm to a value of 1 when the outguteaches a multiple of the goal vector

and solve for the normalization factor: .
t t
IIﬂI
B 1
IIEf|
Therefore we use the normalized Multi D-Norm formula asdai:
1 1ty
Multi D-Norm = —MDN(y,f) = ——=
I (€] IV

Appendix B. Normalized Multipoint Kurtosis Derivation

Based on Kurtosis, we expand Kurtosis to instead considéipieupoints controlled by target vectdir

Zn 1 nyn)4
2
iy yn)

Unnormalized Multipoint Kurtosis= UMKurt(y, fj =

We introduce a normalization fact&r

Zrl}lz_ll_ tnYn)4
N-L,2\2

( n=1 yn)

We normalize MKurt to a value of 1 when the outgireaches a multiple of the goal vectoand solve
for the normalization factor:

Multipoint Kurtosis= MKurt(y, fj = k

Therefore we use the normalized MKurt formula as foIIows:
N— L _
(ENE )" SNty
ZN Lt8 (ZN_L n)2

n=1

Multipoint Kurtosis= MKurt(y, f) =
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