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Abstract

In this paper a new deconvolution method is presented for the detectioraofgd bearing faults from
vibration data. The proposed Maximum Correlated Kurtosis Deconvolutidhadeakes advantage of the
periodic nature of the faults as well as the impulse-like vibration behavi@aceaged with most types of
faults. The results are compared to the standard Minimum Entropy Dectiovolnethod on both simu-
lated and experimental data. The experimental data is from a gearbox \aitlclgp fault, and the results
are compared between healthy and faulty vibrations. The results indicatthéhproposed Maximum
Correlated Kurtosis Deconvolution method performs considerably bettethlearaditional Minimum En-
tropy Deconvolution method, and often performs several times betterlati&action. In addition to this
improved performance, deconvolution of separate fault periods ify@sallowing for concurrent fault de-
tection. Finally, an online implementation is proposed and shown to performanelbe computationally
achievable on a personal computer.

Keywords: Gear tooth fault diagnosis, Gear tooth chip, Minimum entropy deconvolutasimum
correlated kurtosis deconvolution, Correlated kurtosis, AutoregesSnline, Concurrent

1. Introduction

Detecting gear faults has applications in rotating machinery fields such aswvbides [1] and heli-
copter transmissions [2]. Detecting and diagnosing gear faults is importamitdenance planning, pre-
venting equipment damage, and preventing failure. In some applicatiatsasthelicopter transmissions,
a gear fault can potentially result in a life-threatening situation [3].

The main focus of this paper is gear tooth chip fault detection from acceéter data, however the
presented methodology is expected to be applicable to other impact-faulteaswotor rubbing, rolling
element bearing inner and outer-race faults, and other gear tooth fabkse faults manifest in similar
ways on the machine vibration data, and the detection methodologies typicalfavadl of these classes
of faults. Research on rotating machine fault detection has remained aa tagtic over the decades, and
existing methods span a large range including model-based methods [Z, B] djltering methods [9, 10,
11, 10, 12], spectral analysis methods [13, 14, 15], and time-fregueralysis methods [16, 17, 18, 19, 20].
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A few methods particularly of note include Wavelet Transform-based igabs [16, 17, 18, 19, 20], filter
selected by Spectral Kurtosis [11, 10, 12], Cyclostationary Analygis31, 22], and Minimum Entropy
Deconvolution [9, 10, 23]. This paper presents a novel deconvolagpnoach which takes advantage of
the periodicity of the faults.

For detecting gear and rolling-element bearing faults there has beewiagtoend towards autoregres-
sive (AR) model prediction residual fault detection [4, 24, 9, 6, 10jiclv has been shown to béective
in detecting the impulse-like behaviour associated with gear faults. Althougm#tisod is shown to be
effective on some datasets, the expected residual signal is the fault digsabfse, and therefore requiring
the fault amplitude to be significantly larger than the noise level to be detectahisity the AR model
alone. In addition, the AR method requires a priori knowledge of the vibratiwer no-fault conditions
for data-fitting.

Minimum Entropy Deconvolution (MED), originally proposed by R. Wigginsdpplication on seismic
recordings in 1978 [25], iteratively selects a finite impulse responsé (€& to minimize the entropy of
the filtered signal and has had widespread applications across manyUlaldke the AR method, the MED
technique aims to extract the fault impulses while minimizing the noise and therefuking in clear
detection results even under high noise. H. Endo and R. Randall [pbped applying the AR method
followed by MED, forming the method called ARMED and demonstrated the methbd tery dfective
in detecting spalls and tooth cracks. N. Sawalhi et al. [10] demonstratesfftiativeness of the ARMED
process in detecting faults in ball bearing elements. A limitation of the ARMED mathite preference
of the MED algorithm to deconvolve only a single impulse or a selection of impuésespposed to the
desired periodic impulses repeating at the period of the fault.

Inspired by the MED deconvolution technique, this paper proposes amwegbmnovel deconvolution
norm, Correlated Kurtosis (CK), which takes advantage of the perioditityecfaults and requires no AR
model stage prior to deconvolution. The deconvolution technique, Maximumelated Kurtosis Deconvo-
lution (MCKD), is proposed to select a FIR filter to maximize the CK of the resultiggal which empha-
sizes high Kurtosis while encouraging periodicity about a specific peAadterative selection technique
to the deconvolution is derived for first and M-shift MCKD, and the hessare compared using simulation
and experimental data from a controlled gear tooth chip experiment. Despiteulty gear vibration data
showing no visible indication of fault in the original or AR residual data, teeashvolution methods are
able to successfully extract the fault clearly, with the proposed MCKD mepleoftbirming the best. An
online threshold alarm implementation of the MCKD method is presented, shows ¢orbputationally
achievable, and showtitective on looped experimental data.

In the rest of the paper, review of ARMED for fault detection is given ectt®n 2. The novel de-
convolution normCK is presented in Section 3, along with t6K values for some sample input signals.
Next, an iterative selection process for the MCKD problem is derivedifstrand M-shift in Section 4.
Simulated deconvolution results on an impulse train plus noise signal arefgeéd$er the standard MED
and the proposed MCKD method in Section 5.1, from which the advantage M@XD method is clearly
demonstrated. A simulated concurrent fault case is analysed in Sectioan®l.2he results demonstrate
the ability to deconvolve faults with flerent periods separately. Experimental validation, Section 6, is
then performed on a controlled gear chip gearbox test, and resultsrapausd among the AR, ARMED,
MED and MCDK methods. The proposed MCKD method most clearly identifieseieating fault in the
time domain, and is able to indicate a fault significantly better when comparingitfigiidgators between
fault and no-fault data. Finally a computationally simple online concurredt d@tection implementation
of the MCKD fault detection method is presented in Section 7. Validation of tlieeormplementation
is performed on looped experimental data, and is shown to have strdhddsection results while being



AR Linear
Predictor

Figure 1: AR prediction residual methodyn], 9[n], and r[n] are the input signal, predicted signal, and prediction residual
respectively.

computationally achievable for online application.

2. Review of Minimum Entropy Deconvolution-Based Fault Detection

2.1. Autoregressive Model

Autoregressive (AR) models have been a growing trend in rotating maetbregion fault detection
and have been shown to bffextive in extracting gear faults with little a priori knowledge [4, 24, 9]. The
AR system model with no input has structure

Yn = —A1Yn-1 — RYn-2— ... —anYn-N * €En,

whereg; are scalar model cdigcients, N is the order of the AR modek, is white noise, andgy, is
the signal being modelled. That is, the current sample is a linear combinattbe Nfprevious samples
plus additive white noise. To solve for the scalar modelfitcients,a;, there are several approaches. For
this paper the Burg’s lattice-based method [26] is applied due to the robasihestimation. This method
selects the parameters by minimizing the least-squares of both the forwalbdewiard prediction errors.
Fault detection by AR model is approached through the following steps:

Step 1. Select AR model ordét. This order is often selected by Akaike Information Criterion.
Step 2: Fit the AR model to the no-fault data by calcula@ygyby Burg'’s lattice-based method.

Step 3: Perform 1-step ahead prediction on the potentially faulty vibrattaresa calculate the prediction
error, Fig. 1.

The prediction error consists of white noise, disturbances, and poterg@ite trended data from
system dynamics changes. The impulse-like faults associated with geks argcexpected to be more
prominent in this residual. Several major drawbacks exist for this peapogethod. First of all and most
importantly, the expected residual is white noise plus fault impulses; so thsiffual must be significantly
larger in amplitude than the noisgfor detection. And secondly, it requires knowledge of the system under
no-fault conditions. The application of MED in the next section helps resthigse issues.

2.2. Minimum Entropy Deconvolution

MED was originally proposed for application on seismic recordings by Rgigin 1978 [25] and
recently applied to gear fault detection by H. Endo et. al. [9] in 2007. MB&ep a deconvolution problem
where a FIR filter is selected to minimize the entropy of the filtered signal.

Starting from a general linear time-invariant machine acceleration signallmode

Xn = (—@1Xn-1 — @Xn-2 — ... — & Xn-K)+(01Un-1 + boUn 2 + ... + b Uy )+(C20n-1 + C2On 2 + ... + CMOn-m)+En
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wherex, is the sampled acceleration signa,is an unknown input sequenas, is the repeating impulse-
like gear fault input sequence, aaglis noise.ay, by, andcy are scalars representing the dependenceg of
on previousx,, U,, andd, respectively. By taking the z-transform and solving for the systemla@ten,
we have:

B(zY)  c(zl) 1

= ) T AP T A

E

A(z‘l) =l+azt+... +axz X
B(z‘l) =biz +bz2%+... +b "
C (z‘l) =izl +cz%+... +oyzV

whereX, U, andE are the z-transform of,, u,, ande, respectively.

Any stable transfer functio®(z1)/Q(z1) can be approximated as a FIR filter. Since these transfer
functions are clearly stable or marginally stable in this case (otherwise thamaagbuld explode with
infinitely growing vibration), the resulting time domain approximation form in termsooivolution is

z:ﬁu*a+ﬁd*6+ﬁe*é,

X1 ] dl
X2 Uz I )

)? = . N U = . ) d = . )
XN UN dN

whereR's are the FIR filter approximations to their respective transfer functiomeustable assumption,
and N is the number of measured samples of vibration sigfal The deconvolution problem aims to
reconstruct the fault signdTby applying FIR filterf with L samples to measured machine acceleration

y=fxx= f s (ﬁu*ﬁ)+ f s (ﬁd*5)+ f s (ﬁe*é),
f=[ffp... fi]"

It is desired that the resulting filtered signahpproximates fault signaT and this is approached by
selecting filterf to minimizes the noiseféect f « (Re + €) — G, while closely cancelling the systefn

(Ru+d) — G, and extracting a shifted approximation to the fault impulse train signa{h « d) ~ d.

Selection of the filterfﬁgiven only acceleratio® measurements may seem to be fidlilt problem, but
the fault signabTiS expected to be impulse-like (a signal of very high Kurtosis) while compeigwas U
andé are of very low Kurtosis. As a result of this Kurtosidtdrence between the signals, the filter can be
selected to reach a maximum in Kurtosis. To achieve this, R. Wiggins [25ppegbmaximizing of a norm
function called the Varimax Norm, which in the case of one-dimensional MEDQus/alent to maximizing
Kurtosis with assumed zero-mean:
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Describing the deconvolution method in terms of Kurtosis is chosen becasisemmonly used to quantify
the impulse-like fault level of a vibration signal [4, 9, 11]. Assumyads zero-mearyy = 0:
maxkurtosis= max

Ve
f T (2N, )

maxkurtosis= max

(1)

By taking the derivatives of Eq. 1 with respect to filter fiaments f and solving it equal to zero, an
iteratively converging local-maximum solution can be derived as:

S Zr'ﬁlzl y2 -1 T
= S22 (XoX])  Xo[y3 V3 - il 2)
Zn:lyﬁ
X1 Xo X3 ... XN
0 X1 X ... XN-1
XO — 0 0 X1 ... XN=2
0 0 0o ... XN=L+1 Lby N

wherefis iteratively selected. The iterative procedure is implemented with MATLABadlable in the
External Resources Section. The general procedure is as follows:

Step 1: Assume initial filter as a centred impulfes [00 ... 1... 00]".
Step 2: Calculaty and(XOX(T))_l from input signalk.

Step 3: Calculatg asy = X f.

Step 4: Determine new filter cicients by solving forf'in Eq. 2.

Step 5: Repeat from Step 3 for a specified number of iterations or untilndwege in Kurtosis between
iterations is below a specified small value.

Step 6: The final deconvolved signal is calculated asX] f.

H. Endo et. al. [9] proposed the fault detection method ARMED, which apftie AR fault detection
method followed by MED on the resulting prediction residual. The expecwdtsefor MED is approx-
imately the high Kurtosis shifted fault signeTl unlike the AR method which in the best-case scenario
expects the fault signal plus white noise. As a result, the ARMED results iroiregrperformance over
the traditional AR method. The AR residual processing stage is commonly dpplanly to remove the
predictable time-invariant components of the vibration as a processingesteghe regular gear meshing
signals, hence the visibility of the hard-to-predict local fault signal is imgid4, 24, 9, 6].However, this
AR stage may not be necessary in the case of MED since the maximizationrpricdedf aims to filter out
low-Kurtosis components; therefore both ARMED and direct MED techesaare applied for comparison
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Kurtosis = 3.17
CK,(T) = 8.10e-4

Kurtosis = 1.50
CKy(T) = 1.35e-3

Kurtosis = 998
CKy(T)=0 Peak in Kurtosis
T o )
| Kurtosis = 331 A/Peak in CK4(T)
CK,y(T)=0.222

Figure 2: Kurtosis and CK values for several signals. The Kurtosishesaa maximum with a single impulse, W€, reaches a
maximum with 3 impulses. The first signal is white noise.

purposes. Also important to note is that in the case of direct MED faultatiarg no a priori knowledge of
no-fault machine vibrations is required for fault deconvolution.

One major drawback of the MED technique is that given a finite-length whitersgnalx,, MED
is able to successfully deconvolve a single impulse when the filterLsisesuficiently large. This is a
commonly seen problem since in the ideal no-fault case, the expected A& rasilual is white noise. By
then using Kurtosis as the fault comparison, the resulting single impulse malyetodigher Kurtosis than
the train of impulses deconvolved in the fault case, improperly indicating thedeate. Additionally, the
MED algorithm by maximizing Kurtosis prefers a solution with the fewest numbanpulses. This can
sometimes result in deconvolution solutions of fewer-than-desired impuldesse are major drawbacks
for the reliability of automated fault detection by MED and ARMED.

3. Correlated Kurtosis

To improve upon the MED deconvolution technique, the periodicity of the &auitbe taken advantage
of through the definition of a new deconvolution norm. This proposed norm,

Zr’:jzl (Ynyn—T)2

Correlated Kurtosis of First-Shift CK1(T) =
(Zh,¥3)2

’

er:l:l (Hm:o yn—mT)2

Correlated Kurtosis of M-Shife CK(T) = N
(Zn:l yn) *

®3)

L
Yn = Z fuXn-k+1, Xn=0andy,=0forn+1,2,...,N ,
k=1

encourages filter output periodicity about a perfoand high-Kurtosis, hence the name Correlated Kurtosis.
N is the number of samples in the input sigialL is the length of FIR filtterf, and T is the period of
interest. It should be noted thatTif= 0 andM = 1, thenCK is the Kurtosis norm used by MED in Eq. 1.
Fig. 2 illustrates th&K; versus Kurtosis for several simple signals. It can be seen that thegad@K1
approaches a maximum for a periodic impulse about the specified perigghasenl to the Kurtosis which
tends to a maximum with a single impulse. Higher shift CK emphasizes largerrsmrguef impulses in a
row.

To illustrate the usage of CK towards extracting fault signals, we compafegtishift CK values for a
simple simulated vibration example where we have a sinusoidal vibration with actimpee per rotation:
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Signal 1
CK,(T) = 0.00177

Signal 2
CKy(T) =0.00177

Signal 3
CK,(T) =0.00176

Signal 4

CKy(T) =0.00273

Signal 5 T

R N N N N T A I

Figure 3:CK; values for a simple simulated repetitive fault with various amplitudes of tee barmonic vibration. All signals are
normalized by their peak value for better illustration.

Signal 1: y, = sin(27n/100)+ 0.5sin(47n/100)+ noise

Signal 2: yn = 0.3 X1 6n-k100+ 1[siN(22n/100)+ 0.5 + sin(4zn/100) + noisg

Signal 3: yn = 0.3 X1 6n-k100+ 0.5[(sin(2n/100) + 0.5sin(47n/100) + noisg

Signal 4: y, = 0.3 ZL@O On-k100 + 0.2[(sin(27n/100)+ 0.5sin(47n/100)) + noisqg

Signal 5: yn = 0.3 31" 6n-k100

wheredx = 1 for k = 0 andsk = 0 otherwise, anth = 1,2,...,2000. The noise is zero-mean white noise
with variance of ®2. Fig. 3 illustrate€K1(100) for these signals and it is clear that the maximum of these
signals is the fault signal by itself, Signal 5. The goal is to extract the fiagtilses through maximizing
CK, and this problem is approached through a deconvolution method presente following section.

Special consideration is taken in the next section by initial conditions to préwve local maximum solution
achieved by Signal 1.

4, Maximum Correlated Kurtosis Deconvolution

4.1. First-Shift Maximum Correlated Kurtosis Deconvol ution

The MCKD technigue aims to maximize CK for input signélabout the periodl, by selecting a FIR
filter . First we only consider the first-shift MCKD algorithm, and then expanchtethod to M-shift in
the next section. Starting from the maximization problem:

N 2
MCKD1(T) = maCiy(T) = max =L Y1) “
f

T (2N, )

f=[f1fp... fi]"



Towards solving for the filter cdicients corresponding to the maximum, we solve:

icr<1(T)=o,|<:1,2,...,L (5)
dfy

First, the derivatives of the numerator and denominator portions aredsebgarately. Starting with the
numerator,

d d & N d
— KN tor= — 12 =) 2ViViT —VnVio
3, O Numerator= nZ:;(ynyn 1) n; YT Yoo T

N d N d
= [Z 2Yny2n_T d_fl(Yn] + (Z 2)/Znyn—T d_fl(Yn—T]
n=1 1

n=

and since
d_kan = Xn—k+1
resulting in
d N N
g7, O Numerator= D 2o kaY¥ar + D DX T ke 1Y TV (6)
n=1 n=1

Similarly for the denominator,

d d (Y N q N
g7, O Denominator= [;1 yzn] = 2[2 yzn] ar D= 4(2

n=1 n=1

From Eq. 5, Eq. 6, and Eq. 7 it follows:

q N N N N
d_kaK1(T) = 2y~ [Z Xn-ks1YnYa 1 + Z Xn—T—k+1Yn—Ty2n] — 4y~° Z (YnYn-T)? Z YnXn—k+1
n=1 n=1 n=1 n=1

And rewriting in matrix form:

d

SF%am = G = 21 (Xodo + Xrd1) — 4N XoY. ®)
X1—r  Xo-r X3—r ... XN-r
0 Xir Xoor ... XNoior
X = 0 0 X1—r ... XN=2—r ,
0 0 0 v XN-L-r+1 L by N
. T T
ao =[ Y1Y§_T yzyé_T yNYﬁ_T ] , Q1= [ Y1—TYE yz_Ty§ YN—TYﬁ ] )
- T
b= [ YiY1-T Y2Y2-T ... YNYN-T ]

Rearranging Eq. 8,
21BIIPXo¥ = NI (Xodo + Xrd1)
8



and substituting the relation,

y=Xf 9)
results in:
XoXJ f'= ”sz (Xodo + Xrd1)
2||BI12

. . . . . , -1, .
The matrlxXoX(T) is the Toeplitz autocorrelation matrix &and the mvers(eXoX(T, ) is assumed to exist:

2
r= WP (XoX] )" (Xodo + Xrd) (10)
2|12
This resulting equation is nonlinear, but a local maximum solutiorffoan by solved for iteratively. All
datasets processed so far have been found to be monotonically camvirg local maximum solution.
The procedure for solving foFiterativer is as follows, and a link to the MATLAB implementation can be
found in the External Resources Section:

Step 1: Select period of interedt, EnsureT is within the range of approximately 20 to 300,
and if T is in excess of this range the dataset should firstly be downsampled.

Step 2: Calculatr, XJ, and KoX})~* from your input signak.

Step 3: Selectfilter sizé, and assume an initial filter df = [ 00..1-1..00 ]T.
This is selected as aftiérence filter to prevent the algorithm from converging to the
local solution of Signal 1 in Fig. 3 and thefiirence is in the centre because perfor-
mance can be improved through not assuming a minimum phase filter.

Step 4: Calculate the filtered outpgit,from Eq. 9.
Step 5: Calculat&o, @1, andg from .
Step 6: Calculate the new filter diieient, ff from Eq. 10.

Step 7: ISACK1(T) > €? Loop from Step 4 while trues is a small positive number controlling
when the algorithm terminates an@K; denotes the change for the iteration.

Step 8: The final first-shift MCKD-filtered signal about peribds calculated from Eqg. 9.

4.2. M-Shift Maximum Correlated Kurtosis Deconvolution

Results generally improve significantly on experimental data by using a hajlife™MCKD method
because increasing the shift increases the number of sequential imfhdsagorithm is looking to de-
convolve. This performance improvement in fault versus no-fault coisgrais mostly from the reduced
likelihood of erroneously deconvolving periodic impulses in the no-fautaskts. However, higher order
shifts requires better estimates of the fault pefoand increases the complexity of the calculation.

Similarly to the first-shift derivation, we start from the maximization problem

Zrl:lzl (Hr,\]'/l]:o Yn—mT)2
(Xney YA)M+

MCKDm(T) = maxCKy (T) = max (11
f f
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and by solving the derivative of the numerator and denominatGKgf(T) with respect to filter coicients

ka
d 5 (M Xn—mT —k+1
— Ky Numerator= 2 _ el 12
dafe M nz:; (l;l)yn mT] [,;) i ] (12)
q N
— Ky Denominator= 2(M + 1)|y)I*V Z YnXn—ks1 (13)
dfk n=1

Combining Eq. 12 and Eq. 13 results in,

d CKur(T) =0 = 2 —2M-=2 N M (o Xn—mT —k+1
a7, (M) =0= 21 2; rT];[)yn_nﬂ 2y

Yn-mr
N (( M 2
—2(M + 1IN ) [[]_[ yn_mT]
n=1 \\m=0

N
Z yan—k+1’
n=1

and converting to matrix form witk = 1,2,..., L and rearranging results in the iterative solution:

- ( T)—le:
f= pry XOXO Xde/)m (14)
28|12 =0
Yo tor (VAYS 1 Yi_wr Y1Y1-T - - - Y1-mT
o Yoo (YaYat ---Ya_mt i YoYo-T ... Yo-mT
m — . ) - .
YN (ylz\lyzN—T = -yﬁl_m) YNIN-T - - - YN-MT

Eq. 14 can be processed iteratively by following a similar procedure a tirgitrshift MCKD presented
above. Unlike the first-shift MCDM, the solution does not necessarilyeage monotonically, and as a
result the filterf is chosen as the filter which results in the maximunCi, during the iterative process.
For largeM, from experience around 8 or more, the iterative method can result inflassnerical precision
because of exceeding the range of the floating point exponent.

Because the higher-shift MCKD requires better estimates of the faultdo@rand in application the
period is a fractional number (eg. 170.21 samples per gear revolutio@dditional resampling stage is
introduced as a preprocessing step. This additional step resamplesuhsigmalx at a ratio of:

[20T +0.5] : [20(T]+ 0.5]

where|.] and[.] denotes the floor and ceiling operations respectively and the factor &f @bsen as
a good balance between computation time and precision. This resamples theo dhtd the samples
per revolution is approximately the nearest larger integer; for exampl@'8@amples per gear revolution
resamples at a ratio of 3404 . 3600, resulting in.0&0samples per gear revolution. The resampling is
performed by polyphase filter implementation due to the computatidfialemcy of the method. This
choice of resampling method should be investigated as future work since igffieay computational or
fault-detection performance.

The implementation of this method in MATLAB is available in the External Resouseesion.
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5. Simulation Results

5.1. Impulse Train with Noise

To more clearly explain the fierence between the MED and th&eet of the MCKD shift-order, a
simple deconvolution of impulses from white noise is analysed. The signahietbas

inf
X = €y + f[z(sn_kmo), n=0,13,...,999
k=0

wheree, is zero-mean Gaussian white noise of 1 standard deviation and the fault atepfitus varied
between 0 and 5 at a step of 0.01. This signal is not a realistic example tifigataachine fault detection
signals since each impulse is extracted by a nearly independent dedamvphith, while in practical cases
the deconvolution paths for the impulses are similar. This simulation is structutieid imanner to clearly
illustrate the conceptual derence between MED and M-shift MCKD. Fig. 4a illustrates the fault detectio
versusf for i.i.d. e, for eachf, while Fig. 4b illustrates the resulting deconvolved signals when3. A
deconvolution filter size of 200 and iteration count of 100 is used for eagthod. From these results the
conceptual dterence in increasing MCKD shift level is illustrated; where MCKD dectre® more and
more impulses with not-necessarily the same deconvolution path as the sHifhteeases. This clearly
illustrates one of the problems with the standard MED algorithm, which prefededonvolve a single
impulse as the result.

5.2. Concurrent Fault Detection
Consider the simple vibration model:

Xn = SiN(2rn/30) + 0.7sin(37n/30) + f, + &,

wheref, denotes the periodic fault signal caused by the faulty ggds,zero-mean additive white Gaussian
noise with a standard deviation oflQ andn = 0,2,...,2999. Then consider two faulty elements in the
system on with fault periods of 30 and 100 samples. These faulty elementsineimpulse-like vibration
signals convolved with two separate transmission paths:

fd=hgx (Z 5n—k3o]
k=0

fP = hP « [Z 5n—k100]
k=0

Impulse responses andhf refer to two diferent the vibration transmission paths from the faulty gears
to vibration sensor, combined with slightlyfiirent fault characteristics. We select these two transmission
paths as:

=09 -03 01 -005 ]T
b T
R :[0.1 08 -07 -06 04 -02 01 —0.05]
and form four cases:

F1: NoFault:f,=0
11



a) Deconvolution fault indicators versus impulse train amplitude with noise

Kurtosis

MED MCKD,(100) L 10c MCKD,(100) 10 MCKDL(100)
0.03 2
9
0.028 1.8
8
0.026 1.6
—~ ~7 =
S o0.024 S . S 14
5’—0.022 ;“5 &2
© o2 © o1
’ 4 0.8
0.018 3 06
0.016 > 0.4
30 0.014 1 0.2
o 1 2 3 4 5 0o 1 2 3 4 5 0 1 2 3 4 5 o 1 2 3 4 5
Amplitude of impulse train, f Amplitude of impulse train, f Amplitude of impulse train, f Amplitude of impulse train, f

b) Input signal at f = 3 and resulting deconvolution signals.

Input No Noise

Input With Noise WMWWMM&WWMWWMMMWM
MED l
MCKD,(100) , , b l ‘ I , A ,

MCKD,(100) \ il l”, ‘Hl ‘ l oot i

MCKD(100) WMWWMJWMWMMMWW

MCKD;(100) NMWMWWMMMWWM
L | 1 | | | | | | |

0

Figure 4: Deconvolution of a noisy periodic impulse train of period 100 wjtlwstrating the fault detection versus impulse train
amplitude, and b) normalized plot of the resulting deconvolved signals wiplhlga train amplitude of = 3, some signals are
polarity inverted for illustration purposes. (Kurtosis and Correlated Kists independent of the amplitude or polarity of the
signal, so the the filter designed by the deconvolution process can by afrgatitude or polarity. Better illustration is achieved by
normalizing the resulting signals by peak value and ensuring the impukse$ e same polarity) A flierent white noise seed is

used for each value of f.
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F2: Fault on Period 30f, = 0.4f2
F3: Fault on Period 100f, = 0.4fP
F4: Concurrent Faults on Periods 30 and 160= 0.4f2 + 0.4fP

The desired output signals include only the impulse fault signals beforeatientission path. The resulting
fault indicators,CKyu(T) for MCKD and the Kurtosis for MED-based methods, are tabulated in Thble
All algorithms were with filter size of 200, and the MED and MCKD stages wematiéel exactly 100
times each. Fifth-shift MCKD was chosen as a good balance between a Bigftemethod and lower
computation time. AR model orders of 20 were chosen because it is a failyrglel order with respect
to the system dynamics order. Higher numbers indicate a larger indicated=iaum the table, it is clear to
see that only the MCKD algorithm detects the faults successfully. The MEBihigaee performs poorly as
a result of incorrectly deconvolving a single impulse from the no-faukt caisd hence a high fault indicator
for the no-fault case. The MCKD method is not only able to strongly detectahlts, but is also able to
indicate exactly which fault periods are present in each case.

Table 1: Fault indicator values by MCKD, MED, and ARMED. The fault irdars are final CK values for MCKD and the final
Kurtosis values for MED and ARMED. All values are no-fault normalized

Method F1, No Fault F2, Fault on F3, Fault on F4, Concurrent
Period 30 Period 100 Faults on Periods
30 and 100
MCKDs5(30) | 1 9.75 0929 855
MCKDs5(100) | 1 262 798 774
MED 1 0139 Q111 Q137
ARVED 1 101 109 0995

Fig. 5 illustrates the resulting signals for the MCKD approach under coertfiault conditionF4. Itis
clear that the faults with a period of 30 and 100 are successfully isolgtadedely during the deconvolution
process, despite the fact that the noise level seems to obfuscate thegfiaals entirely.

Additionally, the simple fault caseB1 (no fault) andF3 (fault of period 100) are compared using
the Complex Shifted Morlet Wavelet Transform [17]. The Complex Shifteatitt Wavelet Transform
is a Morlet Wavelet-based narrow-band filter approach with centreiémzy varied across the frequency
range. The bandwidth is fixed across all centre frequencies. Resuliselse two simple fault cases are
illustrated in Fig. 6 for the Discrete Fourier Transform and Complex Shifteded Wavelet Transform.
A slight difference can be observed in the Fourier spectrum, the repeating fadde cdightly observed
in the wide-bandwidth Complex Shifted Morlet Wavelet Transform, and thk ¢an barely be seen in the
narrow-bandwidth Complex Shifted Morlet Wavelet Transform. In the viidedwidth case, Fig. 6b, the
narrowband envelope for centre frequency of5a rad/sample is compared for no fault and fault cases.
This centre frequency is chosen for investigation since the scalograieféault signal appears to indicate
the fault best around this centre frequency. The Kurtosis of this gmeefalicates the fault correctly, but
not nearly as strong as thefldirence observed for MCKD in Table 1 and illustrated in Fig. 5. Unlike
standard time-frequency and filtering methods, the deconvolution methodse aitively cancel the noise
— as opposed to extracting a subset of the noise.
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Figure 5: Simulated resulting signals for concurrent fault detection pifteressing with indicated method. All signals are normal-
ized and some signals are polarity flipped for better illustration.

14



a) Discrete Fourier Transform spectrum of simulated signals
Data with no fault, signal F1 Data with period of 100 samples fault, signal F3
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b) Complex Shifted Morlet Wavelet Transform with wide bandwidth and envolope at 0.75 pi*rad/sample
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c) Complex Shifted Morlet Wavelet Transform with narrow bandwidth
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Figure 6: Simulated signals with no fault (signal F1) and fault (signaldé®&)paring by a) Discrete Fourier Transform spectrum,
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Figure 7: Gearbox and experimental equipment layout.

Gear 1 with chipped tooth

Figure 8: Faulty gear 1 with seeded tooth chip.

6. Experimental Results

For validation, vibration data is collected and compared from a gearbox withvéhout a gear chip.
The machine configuration, Fig. 7, is composed of a motor, gearbox,rakd.brwo gears are used for the
Gear 1 position; one in healthy condition and one with a gear crack, FidhéniRachine is operated at 10%
load and the rotational frequency of Shaft 1 is varied between 10,0025 30, 35, and 40 Hz [27]. The
accelerometer is of model PCB 352C67 and the data is aquired through 8i§i8F20-42 Signal Analyzer
to a laptop [28]. The vibration accelerometer sampling frequency is vac@atding to the rotational speed
between 1280 Hz and 5120 Hz, and 8192 samples are aquired for eashreraent. At each frequency,
two non-fault vibration measurements and a single fault vibration measur@vauired and processed.

In the ARMED method proposed by H. Endo and R. Randall, the authoggestithat the MED stage
should just be performed for only a few iterations to prevent errong@xsracting impulses [9]. Fig. 9
illustrates the results of MCKD, MED, and ARMED versus the iteration in th@dealution stage for the
experimental gear chip data. It can be seen that for both the MED andEiR&pproach, the deconvolved
signals indicate the fault clearest with a high iteration count, although the nsefaibdo extract a fault
impulse for each revolution of the faulty gear. Reducing the iteration cooe$ dot appear to resolve
this problem in either case. As a result, for the duration of this paper the M&h¥ithm is executed to
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Figure 9: Deconvolved signals versus deconvolution iteration for a)diiét MCKD, b) MED, and c) ARMED for an AR model
order of 100 and filter sizes of 200 samples. The vibration data is frompetadox under gear chip fault at 40Hz shaft speed and
10% load and resulting signals are normalized by peak values with sonadssiring polarity swapped for better illustration.

convergence instead of being limited to just a few iterations. Fig. 10 illustragegeitonvolution results for
the same fault vibration signal versus filter size. By close inspection, itas ttiat for the MCKD method a
higher filter size results in improved results. With the MED approach the tiegdault is roughly extracted
at around a 50 filter size, and larger filter sizes cleans the signal updebat of missing many of the fault
impulses.

The general procedure for the data processing is as follows:

Step 1: Shaft 1 speeds for each data measurement are assumed tethpt@nd close to the
indicated frequency. To calculate the speed, the Discrete Fourierfdnanis applied
and peak detection is performed within the vicinity of the expected shaftisjdee
period of Shaft 1 in number of samples is referred tolrasnd can be a fractional
number of samples (such as 172.32 samples per gear revolution). Dpesd sr
tachometer measurement would result in better performance of the MCDK dnetho

Step 2: Generate AR models at each operational frequency from thredseo-fault data mea-
surement of ordel0.4T + 0.5, i.e. 40% the number of data samples corresponding to
a single Shaft 1 revolution and rounded to the nearest integer. The Aikaigrma-
tion Criterion is not used to select the AR model orders because it eusiyanverfits
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the data by suggesting model orders almost equal to the dataset sizearud 8000
samples.

Step 3: Calculate AR model prediction residuals for the first no-fault dadettze fault data
measurements by 1-step ahead prediction.

Step 4: Deconvolution filter sizes for both MED and MCKD are selectd®.&% + 0.5], i.e.
80% the number of data samples in a single Shaft 1 revolution and rounded to th
nearest integer.

Step 5: MED is performed on each AR residual, each first no-fault éiatasd each fault
dataset; resulting in the signals for MED and ARMED methods. The Kurtosadi
resulting output signal is calculated as a fault indicator.

Step 6: First, third, and fifth-shift MCKD is applied about periddfor each first no-fault
dataset, and each fault datas@Kyu(T) is calculated from the resulting deconvolved
signals as a fault indicator wheh corresponds to the shift of the MCKD algorithm
(eg.CK3(T) is used as the fault indicator for third-shift MCKD).

Time synchronous averaging is not considered as a preprocesgindustghe significant loss of in-
formation through this operation, and the lack of tachometer or detailed @peter information in this
experimental setup. The deconvolution filter sizes and AR model ordethddfault datasets and first
no-fault datasets are tabulated in Table 2. These high-length deconndiltdos are selected because the
time-domain plots more clearly illustrates the faults.

Table 2: Estimated shaft 1 period and corresponding deconvolutionsiifies for no-fault and fault cases.

No-Fault Dataset Fault Dataset
Shaft 1 Period, T Deconv. Filter Size AR Model Period, T Deconv. Filter Size AR Model
Frequency| (# Samples) L (# Samples) Order | (# Samples) L (# Samples) Order
10 Hz 2601 208 104 2770 222 111
15 Hz 1737 139 69 1772 142 71
20 Hz 2592 207 104 2636 211 105
25 Hz 2070 166 83 2096 168 84
30 Hz 1724 138 69 1742 139 70
35Hz 1476 118 59 1490 119 60
40 Hz 1292 103 52 1303 104 52

The resulting processed signals for no-fault and fault conditions &lz3&e compared in Fig. 11. All
processed signals under gear chip fault are plotted in Fig. 12 for glidércies and all methods. From
these results it is clear that the MCKD method extracts the expected single inpeulgear revolution,
while the MED-based methods tend to miss most of the fault impulses. The defaglennpulses by
different methods do not necessarily line up as a result of ffereint phase lags of the resulting filters. The
exact placement of the faults in the time domain can be recovered by simply ptbgiRdR filter responses
and typically the lag is clear in these plots.
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Figure 11: Experimental acceleration data with fault detection processthga) gear chip and shaft 1 speed of 35 Hz, and b)

normal gear and shaft 1 speed of 35 Hz. All signals are normalizgebhly values and some signals are reversed in polarity for
better illustration.
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a) Faulty gear MCKD, method b) Faulty gear MCKD; method
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Fault detection based on deconvolution filter sizes of 2 through 150 saarplasalysed and compared,
Fig. 13. The filter size is chosen as the investigated parameter here &éggus9 illustrates that both
methods indicate the fault better at a high iteration count, while from Fig. 10 riaékear at which filter
size each method performs best at. From the plots it is clear that MCKD methuficsigtly outperforms
the MED method, often performing over 10 times better. The performancdgantreasing the shift from
first to third and fifth shift is very significant. In Fig.13f, the fifth-shift KO performs worse than all
other methods for a brief filter size range, this could be as a result ofpachine speed estimation or
deconvolution convergence problems. Also important to note is that the Ndgach performs similarly
to the ARMED approach, indicating that the AR stage may not be requiresbfoe datasets.

7. Online Condition Monitoring Implementation

In industry application, fault detection during machine operation is criticalr@vgnting equipment
damage or failure. Presented here is a modification of the MCKD technique ndomthe health of a
machine online and generate fault alarms.

Two operations for bfiering and downsampling are defined as:

X1 XR+1 XoR+1

. BR(... X2 XR+2  X2R+2
Data buffering by factor R and no overlaBr : | x1 X2 X3 ... | LN B -

XR  XoR X3R

Xo0 Xp1 Xo2 --- Xo0 Xob Xo,2D
X1,0 X1 X12 ... 5 X1,0 X1,p X1,2D
l
Downsample by factor [D |:| X20 X21 X22 ... | — | X20 X2D X22p
X0 X1 X2 ... X0 Xi,p X.,2D

Fig. 14 illustrates the online implementation schematic. The presented implementatiom isifigle
accelerometer near both Shaft 1 and Shaft 2, but performance dampb®/ed by placing two dierent
accelerometers close to each shaft. A speed measurement of one offiseislhecommended, but if
the system is expected to be operating at only a single operating speediiceetdFourier Transform
peak detection on the acceleration signal can estimate the exact machide Bpeeduce complexity, the
MCKD blocks performs only a single deconvolution filter update iteration for ealthmn of input data
and the filter update downsampling faci@rcontrols how often a filter update iteration is performed. The
buffer factorF controls the window size of MCKD iteration and a value resulting in around 1Cstime
period of the shaft is recommended. ThefbufactorW controls the window size foEK fault indicator
generation, a larger factor will result in a more slowly changing fault irtdicand slower time response
to a fault while a smaller factor results in a more noisy fault indicator but quitke response to a fault.
Constant gain values &f andk, convert the measured speed to the periods of Shaft 1 and 2 respective
The alarm thresholds should be selected based on indicator valuesnori@ent. fsnas 1 and fspast 2refer to
the current FIR deconvolution filters for the respective shafts.

For testing the online implementation, basic input sequences are formecdcfooperating frequency
by looping the experimental no-fault data ten times followed by looping faw# thn times. The data is
looped by direct concatenation of the datasets reduced to the numbergésaorresponding to the largest
number of complete shaft revolutions in the dataset. A deconvolution filtepsize= 200, no decimation
factorD = 1, and filter update and fault indicatorfber sizes of 5000 is usey = F = 5000.
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and FIR filter plots are creative illustrations, not data.

Table 3: Computation times for onlindCKD gear chip fault detection on looped experimental data.

Shaft 1 Fre-| Number of Sam- Duration of Data MCKD; Data Pro- MCKDs Data Pro-

guency ples Acquisition cessing Time cessing Time
(kSamples) (Seconds) (Seconds) (Seconds)

15 Hz 326 128 26 44

20 Hz 324 63 27 45

25 Hz 325 64 24 45

30 Hz 325 64 34 53

35 Hz 324 63 25 45

40 Hz 326 64 35 54

Table 3 illustrates the number of samples per dataset after looping, the timddakeasure the data,
and the processing time for the proposed online fault detection implementatio®.processing times
are measured on Intel Core 2 Duo CPUs at 2.00GHz with implementation in MBT#hout parallel
processing. From the processing times, it is clear that the proposed nietragily achievable in an online
application. Fig. 15 illustrates the online fault detection results for first-8h@KD. It is clear that the
fault detection performance is good in online application, and the propbeeshold alarm on this signal is
feasible. The trough in the fault indicator as the fault is introduced is asust i both the dataset looping
not being phase aligned during dataset concatenation between thalinarf@ fault data, and the slight
machine speed fierence between the two datasets. Fig. 16 presents the fifth-shift MCi(DgeClearly
the MCKD method is very strong at detecting the faults, with the fifth-shift MGK&hod providing clearer
results than the first-shift implementation but at a higher computational cost.
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8. Conclusion

This paper introduces a new deconvolution process, MCKD, which aimedondolve periodic im-
pulse faults from a machine vibration signal. Simulation data and experimemtath vibration data
were compared between MCKD and the established methods of AR residdél, &hd ARMED. The
experimental results indicate that the AR residual method is inadequate, ishasha result of the fault
impulses being of comparable amplitude to the system noise and non-LTtthéstcs of the signal. Ad-
ditionally, the experimental results indicate that the ARMED method performs siynitadirect MED
application; indicating that the AR stage of ARMED is unnecessary on sotasala. Finally, the sim-
ulation and experimental results indicate the MCKD method is the most sudcessfeconvolving the
periodic faults and has significantly better gear chip fault detection resttks, on the order of 10 or more
times better at fault detection on the experimental data. There is a signifexdntrpance advantage gain
from increasing the shift-order from first to third, but fifth-shift MCKdd not significantly outperform
third-shift. As a result the third-shift MCKD method is recommended in applicatilearly the MCKD
method is a notable improvement upon the existing state-of-the-art methodsagridclude applications
beyond rotating machine fault detection.

Online application of the MCKD method is shown to be computationally implementablgersanal
computer, and results from fault detection on looped experimental dataiesliit is a strong method in
online application and a simple threshold alarm is feasible.

Further work should investigate the application of MCKD towards detectingr d¥ipes of gear faults,
bearing faults, and rotor-to-stator rubbing. Concurrent fault detestimuld be investigated on an experi-
mental setup. The choice of polyphase filter resampling should be invedtigatieer, since it may have a
significant €fect on the computational cost and algorithm fault detection performance.
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