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Abstract

In this paper a new deconvolution method is presented for the detection of gear and bearing faults from
vibration data. The proposed Maximum Correlated Kurtosis Deconvolution method takes advantage of the
periodic nature of the faults as well as the impulse-like vibration behaviour associated with most types of
faults. The results are compared to the standard Minimum Entropy Deconvolution method on both simu-
lated and experimental data. The experimental data is from a gearbox with gear chip fault, and the results
are compared between healthy and faulty vibrations. The results indicate that the proposed Maximum
Correlated Kurtosis Deconvolution method performs considerably better than the traditional Minimum En-
tropy Deconvolution method, and often performs several times better at fault detection. In addition to this
improved performance, deconvolution of separate fault periods is possible; allowing for concurrent fault de-
tection. Finally, an online implementation is proposed and shown to perform welland be computationally
achievable on a personal computer.

Keywords: Gear tooth fault diagnosis, Gear tooth chip, Minimum entropy deconvolution,Maximum
correlated kurtosis deconvolution, Correlated kurtosis, Autoregressive, Online, Concurrent

1. Introduction

Detecting gear faults has applications in rotating machinery fields such as windturbines [1] and heli-
copter transmissions [2]. Detecting and diagnosing gear faults is important tomaintenance planning, pre-
venting equipment damage, and preventing failure. In some applications, such as helicopter transmissions,
a gear fault can potentially result in a life-threatening situation [3].

The main focus of this paper is gear tooth chip fault detection from accelerometer data, however the
presented methodology is expected to be applicable to other impact-faults suchas rotor rubbing, rolling
element bearing inner and outer-race faults, and other gear tooth faults.These faults manifest in similar
ways on the machine vibration data, and the detection methodologies typically work for all of these classes
of faults. Research on rotating machine fault detection has remained an active topic over the decades, and
existing methods span a large range including model-based methods [4, 5, 6,7, 8], filtering methods [9, 10,
11, 10, 12], spectral analysis methods [13, 14, 15], and time-frequency analysis methods [16, 17, 18, 19, 20].
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A few methods particularly of note include Wavelet Transform-based techniques [16, 17, 18, 19, 20], filter
selected by Spectral Kurtosis [11, 10, 12], Cyclostationary Analysis [14, 21, 22], and Minimum Entropy
Deconvolution [9, 10, 23]. This paper presents a novel deconvolutionapproach which takes advantage of
the periodicity of the faults.

For detecting gear and rolling-element bearing faults there has been a growing trend towards autoregres-
sive (AR) model prediction residual fault detection [4, 24, 9, 6, 10], which has been shown to be effective
in detecting the impulse-like behaviour associated with gear faults. Although thismethod is shown to be
effective on some datasets, the expected residual signal is the fault signal plus noise, and therefore requiring
the fault amplitude to be significantly larger than the noise level to be detectable by using the AR model
alone. In addition, the AR method requires a priori knowledge of the vibration under no-fault conditions
for data-fitting.

Minimum Entropy Deconvolution (MED), originally proposed by R. Wiggins for application on seismic
recordings in 1978 [25], iteratively selects a finite impulse response (FIR) filter to minimize the entropy of
the filtered signal and has had widespread applications across many fields. Unlike the AR method, the MED
technique aims to extract the fault impulses while minimizing the noise and thereforeresulting in clear
detection results even under high noise. H. Endo and R. Randall [9] proposed applying the AR method
followed by MED, forming the method called ARMED and demonstrated the method tobe very effective
in detecting spalls and tooth cracks. N. Sawalhi et al. [10] demonstrated theeffectiveness of the ARMED
process in detecting faults in ball bearing elements. A limitation of the ARMED methodis the preference
of the MED algorithm to deconvolve only a single impulse or a selection of impulses, as opposed to the
desired periodic impulses repeating at the period of the fault.

Inspired by the MED deconvolution technique, this paper proposes an improved novel deconvolution
norm, Correlated Kurtosis (CK), which takes advantage of the periodicity of the faults and requires no AR
model stage prior to deconvolution. The deconvolution technique, Maximum Correlated Kurtosis Deconvo-
lution (MCKD), is proposed to select a FIR filter to maximize the CK of the resultingsignal which empha-
sizes high Kurtosis while encouraging periodicity about a specific period.An iterative selection technique
to the deconvolution is derived for first and M-shift MCKD, and the results are compared using simulation
and experimental data from a controlled gear tooth chip experiment. Despite the faulty gear vibration data
showing no visible indication of fault in the original or AR residual data, the deconvolution methods are
able to successfully extract the fault clearly, with the proposed MCKD methodperforming the best. An
online threshold alarm implementation of the MCKD method is presented, shown to be computationally
achievable, and shown effective on looped experimental data.

In the rest of the paper, review of ARMED for fault detection is given in Section 2. The novel de-
convolution normCK is presented in Section 3, along with theCK values for some sample input signals.
Next, an iterative selection process for the MCKD problem is derived forfirst and M-shift in Section 4.
Simulated deconvolution results on an impulse train plus noise signal are presented for the standard MED
and the proposed MCKD method in Section 5.1, from which the advantage of the MCKD method is clearly
demonstrated. A simulated concurrent fault case is analysed in Section 5.2,and the results demonstrate
the ability to deconvolve faults with different periods separately. Experimental validation, Section 6, is
then performed on a controlled gear chip gearbox test, and results are compared among the AR, ARMED,
MED and MCDK methods. The proposed MCKD method most clearly identifies therepeating fault in the
time domain, and is able to indicate a fault significantly better when comparing faultindicators between
fault and no-fault data. Finally a computationally simple online concurrent fault detection implementation
of the MCKD fault detection method is presented in Section 7. Validation of the online implementation
is performed on looped experimental data, and is shown to have strong fault detection results while being
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Figure 1: AR prediction residual method.y[n], ŷ[n], and r[n] are the input signal, predicted signal, and prediction residual
respectively.

computationally achievable for online application.

2. Review of Minimum Entropy Deconvolution-Based Fault Detection

2.1. Autoregressive Model

Autoregressive (AR) models have been a growing trend in rotating machinevibration fault detection
and have been shown to be effective in extracting gear faults with little a priori knowledge [4, 24, 9]. The
AR system model with no input has structure

yn = −a1yn−1 − a2yn−2 − . . . − aNyn−N + en,

whereai are scalar model coefficients,N is the order of the AR model,en is white noise, andyn is
the signal being modelled. That is, the current sample is a linear combination ofthe N previous samples
plus additive white noise. To solve for the scalar model coefficients,ai, there are several approaches. For
this paper the Burg’s lattice-based method [26] is applied due to the robustness of estimation. This method
selects the parameters by minimizing the least-squares of both the forward andbackward prediction errors.

Fault detection by AR model is approached through the following steps:

Step 1: Select AR model orderN. This order is often selected by Akaike Information Criterion.

Step 2: Fit the AR model to the no-fault data by calculatingais by Burg’s lattice-based method.

Step 3: Perform 1-step ahead prediction on the potentially faulty vibration data and calculate the prediction
error, Fig. 1.

The prediction error consists of white noise, disturbances, and potentiallysome trended data from
system dynamics changes. The impulse-like faults associated with gear cracks are expected to be more
prominent in this residual. Several major drawbacks exist for this proposed method. First of all and most
importantly, the expected residual is white noise plus fault impulses; so the fault signal must be significantly
larger in amplitude than the noiseen for detection. And secondly, it requires knowledge of the system under
no-fault conditions. The application of MED in the next section helps resolve these issues.

2.2. Minimum Entropy Deconvolution

MED was originally proposed for application on seismic recordings by R. Wiggins in 1978 [25] and
recently applied to gear fault detection by H. Endo et. al. [9] in 2007. MED poses a deconvolution problem
where a FIR filter is selected to minimize the entropy of the filtered signal.

Starting from a general linear time-invariant machine acceleration signal model:

xn = (−a1xn−1 − a2xn−2 − . . . − aK xn−K)+(b1un−1 + b2un−2 + . . . + bLun−L)+(c1dn−1 + c2dn−2 + . . . + cMdn−M)+en
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wherexn is the sampled acceleration signal,un is an unknown input sequence,dn is the repeating impulse-
like gear fault input sequence, anden is noise.ak, bk, andck are scalars representing the dependence ofxn

on previousxn, un, anddn respectively. By taking the z-transform and solving for the system acceleration,
we have:

X =
B
(

z−1
)

A
(
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U +

C
(

z−1
)

A
(

z−1)
D +

1
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(
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(
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whereX, U, andE are the z-transform ofxn, un, anden respectively.
Any stable transfer functionP(z−1)/Q(z−1) can be approximated as a FIR filter. Since these transfer

functions are clearly stable or marginally stable in this case (otherwise the machine would explode with
infinitely growing vibration), the resulting time domain approximation form in terms ofconvolution is
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where~h’s are the FIR filter approximations to their respective transfer functions under stable assumption,
and N is the number of measured samples of vibration signalxn. The deconvolution problem aims to
reconstruct the fault signal~d by applying FIR filter~f with L samples to measured machine acceleration~x:

~y = ~f ∗ ~x = ~f ∗
(

~hu ∗ ~u
)

+ ~f ∗
(

~hd ∗ ~d
)

+ ~f ∗
(

~he ∗ ~e
)

,

~f =
[

f1 f2 . . . fL
]T

It is desired that the resulting filtered signal~y approximates fault signal~d and this is approached by
selecting filter~f to minimizes the noise effect ~f ∗

(

~he ∗ ~e
)

→ ~0, while closely cancelling the system~f ∗
(

~hu ∗ ~u
)

→ ~0, and extracting a shifted approximation to the fault impulse train signal~f ∗
(

~hd ∗ ~d
)

≈ ~d.

Selection of the filter~f given only acceleration~x measurements may seem to be a difficult problem, but
the fault signal~d is expected to be impulse-like (a signal of very high Kurtosis) while competing signals~u
and~e are of very low Kurtosis. As a result of this Kurtosis difference between the signals, the filter can be
selected to reach a maximum in Kurtosis. To achieve this, R. Wiggins [25] proposed maximizing of a norm
function called the Varimax Norm, which in the case of one-dimensional MED is equivalent to maximizing
Kurtosis with assumed zero-mean:
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1
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Describing the deconvolution method in terms of Kurtosis is chosen because itis commonly used to quantify
the impulse-like fault level of a vibration signal [4, 9, 11]. Assumingyn is zero-mean,µy = 0:

max
~f

kurtosis= max
~f

∑N
n=1 y4

n
(

∑N
n=1 y2

n

)2
(1)

By taking the derivatives of Eq. 1 with respect to filter coefficients ~f and solving it equal to zero, an
iteratively converging local-maximum solution can be derived as:
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L by N

where ~f is iteratively selected. The iterative procedure is implemented with MATLAB andavailable in the
External Resources Section. The general procedure is as follows:

Step 1: Assume initial filter as a centred impulse,~f = [0 0 . . . 1 . . . 0 0]T .

Step 2: CalculateX0 and
(

X0XT
0

)−1
from input signal~x.

Step 3: Calculate~y as~y = XT
0
~f .

Step 4: Determine new filter coefficients by solving for~f in Eq. 2.

Step 5: Repeat from Step 3 for a specified number of iterations or until the change in Kurtosis between
iterations is below a specified small value.

Step 6: The final deconvolved signal is calculated as~y = XT
0
~f .

H. Endo et. al. [9] proposed the fault detection method ARMED, which applies the AR fault detection
method followed by MED on the resulting prediction residual. The expected results for MED is approx-
imately the high Kurtosis shifted fault signal~d, unlike the AR method which in the best-case scenario
expects the fault signal plus white noise. As a result, the ARMED results in improved performance over
the traditional AR method. The AR residual processing stage is commonly applied, mainly to remove the
predictable time-invariant components of the vibration as a processing step,e.g. the regular gear meshing
signals, hence the visibility of the hard-to-predict local fault signal is improved [4, 24, 9, 6].However, this
AR stage may not be necessary in the case of MED since the maximization problem itself aims to filter out
low-Kurtosis components; therefore both ARMED and direct MED techniques are applied for comparison
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Kurtosis = 3.17

CK1(T) = 8.10e-4

Kurtosis = 1.50

CK1(T) = 1.35e-3

Kurtosis = 998

CK1(T) = 0

Kurtosis = 331

CK1(T) = 0.222

Peak in Kurtosis

Peak in CK1(T)
T

Figure 2: Kurtosis and CK values for several signals. The Kurtosis reaches a maximum with a single impulse, theCK1 reaches a
maximum with 3 impulses. The first signal is white noise.

purposes. Also important to note is that in the case of direct MED fault extraction, no a priori knowledge of
no-fault machine vibrations is required for fault deconvolution.

One major drawback of the MED technique is that given a finite-length white noise signalxn, MED
is able to successfully deconvolve a single impulse when the filter sizeL is sufficiently large. This is a
commonly seen problem since in the ideal no-fault case, the expected AR model residual is white noise. By
then using Kurtosis as the fault comparison, the resulting single impulse may thenbe of higher Kurtosis than
the train of impulses deconvolved in the fault case, improperly indicating the fault-state. Additionally, the
MED algorithm by maximizing Kurtosis prefers a solution with the fewest number of impulses. This can
sometimes result in deconvolution solutions of fewer-than-desired impulses.These are major drawbacks
for the reliability of automated fault detection by MED and ARMED.

3. Correlated Kurtosis

To improve upon the MED deconvolution technique, the periodicity of the faultcan be taken advantage
of through the definition of a new deconvolution norm. This proposed norm,

Correlated Kurtosis of First-Shift= CK1(T ) =

∑N
n=1 (ynyn−T )2

(
∑N

n=1 y2
n)2

,

Correlated Kurtosis of M-Shift= CKM(T ) =

∑N
n=1

(

∏M
m=0 yn−mT

)2

(
∑N

n=1 y2
n)M+1

, (3)

yn =

L
∑

k=1

fkxn−k+1, xn = 0 andyn = 0 for n , 1,2, . . . ,N ,

encourages filter output periodicity about a periodT and high-Kurtosis, hence the name Correlated Kurtosis.
N is the number of samples in the input signal~x, L is the length of FIR filter~f , andT is the period of
interest. It should be noted that ifT = 0 andM = 1, thenCK is the Kurtosis norm used by MED in Eq. 1.
Fig. 2 illustrates theCK1 versus Kurtosis for several simple signals. It can be seen that the proposedCK1

approaches a maximum for a periodic impulse about the specified period as opposed to the Kurtosis which
tends to a maximum with a single impulse. Higher shift CK emphasizes larger sequences of impulses in a
row.

To illustrate the usage of CK towards extracting fault signals, we compare thefirst-shift CK values for a
simple simulated vibration example where we have a sinusoidal vibration with an impact once per rotation:
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T

CK (T) = 0.001771

Signal 1

CK (T) = 0.001771

Signal 2

CK (T) = 0.001761

Signal 3

CK (T) = 0.002731

Signal 4

CK (T) = 0.09001

Signal 5

Figure 3:CK1 values for a simple simulated repetitive fault with various amplitudes of the base harmonic vibration. All signals are
normalized by their peak value for better illustration.

Signal 1: yn = sin(2πn/100)+ 0.5sin(4πn/100)+ noise

Signal 2: yn = 0.3
∑inf

k=0 δn−k100+ 1[sin(2πn/100)+ 0.5 ∗ sin(4πn/100)+ noise]

Signal 3: yn = 0.3
∑inf

k=0 δn−k100+ 0.5[(sin(2πn/100)+ 0.5sin(4πn/100)) + noise]

Signal 4: yn = 0.3
∑inf

k=0 δn−k100+ 0.2[(sin(2πn/100)+ 0.5sin(4πn/100)) + noise]

Signal 5: yn = 0.3
∑inf

k=0 δn−k100

whereδk = 1 for k = 0 andδk = 0 otherwise, andn = 1,2, . . . ,2000. The noise is zero-mean white noise
with variance of 0.22. Fig. 3 illustratesCK1(100) for these signals and it is clear that the maximum of these
signals is the fault signal by itself, Signal 5. The goal is to extract the faultimpulses through maximizing
CK, and this problem is approached through a deconvolution method presented in the following section.
Special consideration is taken in the next section by initial conditions to prevent the local maximum solution
achieved by Signal 1.

4. Maximum Correlated Kurtosis Deconvolution

4.1. First-Shift Maximum Correlated Kurtosis Deconvolution

The MCKD technique aims to maximize CK for input signal,~x, about the period,T , by selecting a FIR
filter ~f . First we only consider the first-shift MCKD algorithm, and then expand themethod to M-shift in
the next section. Starting from the maximization problem:

MCKD1(T ) = max
~f

CK1(T ) = max
~f

∑N
n=1 (ynyn−T )2

(

∑N
n=1 y2

n

)2
(4)

~f =
[

f1 f2 . . . fL
]T
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Towards solving for the filter coefficients corresponding to the maximum, we solve:

d
d fk

CK1(T ) = 0, k = 1, 2, . . . , L (5)

First, the derivatives of the numerator and denominator portions are solved separately. Starting with the
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From Eq. 5, Eq. 6, and Eq. 7 it follows:
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and substituting the relation,
~y = XT

0
~f (9)

results in:

X0XT
0
~f =
‖~y‖2

2‖~β‖2
(

X0~α0 + XT~α1
)

The matrixX0XT
0 is the Toeplitz autocorrelation matrix of~x and the inverse

(
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)−1
is assumed to exist:

~f =
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(10)

This resulting equation is nonlinear, but a local maximum solution for~f can by solved for iteratively. All
datasets processed so far have been found to be monotonically convergent to a local maximum solution.
The procedure for solving for~f iteratively is as follows, and a link to the MATLAB implementation can be
found in the External Resources Section:

Step 1: Select period of interest,T . EnsureT is within the range of approximately 20 to 300,
and if T is in excess of this range the dataset should firstly be downsampled.

Step 2: CalculateXT , XT
0 , and (X0XT

0 )−1 from your input signal~x.

Step 3: Select filter size,L, and assume an initial filter of~f =
[

0 0 . . . 1 −1 . . . 0 0
]T

.
This is selected as a difference filter to prevent the algorithm from converging to the
local solution of Signal 1 in Fig. 3 and the difference is in the centre because perfor-
mance can be improved through not assuming a minimum phase filter.

Step 4: Calculate the filtered output,~y, from Eq. 9.

Step 5: Calculate~α0, ~α1, and~β from~y.

Step 6: Calculate the new filter coefficient, ~f , from Eq. 10.

Step 7: Is∆CK1(T ) > ǫ? Loop from Step 4 while true.ǫ is a small positive number controlling
when the algorithm terminates and∆CK1 denotes the change for the iteration.

Step 8: The final first-shift MCKD-filtered signal about periodT is calculated from Eq. 9.

4.2. M-Shift Maximum Correlated Kurtosis Deconvolution

Results generally improve significantly on experimental data by using a highershift MCKD method
because increasing the shift increases the number of sequential impulsesthe algorithm is looking to de-
convolve. This performance improvement in fault versus no-fault comparison is mostly from the reduced
likelihood of erroneously deconvolving periodic impulses in the no-fault datasets. However, higher order
shifts requires better estimates of the fault periodT and increases the complexity of the calculation.

Similarly to the first-shift derivation, we start from the maximization problem

MCKDM(T ) = max
~f

CKM(T ) = max
~f

∑N
n=1

(

∏M
m=0 yn−mT

)2

(
∑N

n=1 y2
n)M+1

(11)

9



and by solving the derivative of the numerator and denominator ofCKM(T ) with respect to filter coefficients
fk:

d
d fk

CKM Numerator= 2
N
∑

n=1



































M
∏

m=0

yn−mT

















2 














M
∑

m=0

xn−mT−k+1

yn−mT



































(12)

d
d fk

CKM Denominator= 2(M + 1)‖~y‖2M
N
∑

n=1

ynxn−k+1 (13)

Combining Eq. 12 and Eq. 13 results in,

d
d fk

CKM(T ) =0 = 2‖~y‖−2M−2
N
∑

n=1
























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







M
∏
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



2 



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





M
∑

m=0

xn−mT−k+1

yn−mT


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


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










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





− 2(M + 1)‖~y‖−2M−4
N
∑

n=1



































M
∏

m=0

yn−mT

















2
















N
∑

n=1

ynxn−k+1,

and converting to matrix form withk = 1,2, . . . , L and rearranging results in the iterative solution:

~f =
‖~y‖2

2‖~β‖2

(

X0XT
0

)−1
M
∑

m=0

XmT~αm (14)

~αm =









































y−1
1−mT

(

y2
1y2

1−T . . . y
2
1−MT

)

y−1
2−mT

(

y2
2y2

2−T . . . y
2
2−MT

)

...

y−1
N−mT

(

y2
Ny2

N−T . . . y
2
N−MT

)














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
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, ~β =



































y1y1−T . . . y1−MT

y2y2−T . . . y2−MT
...

yNyN−T . . . yN−MT
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































Eq. 14 can be processed iteratively by following a similar procedure as to the first-shift MCKD presented
above. Unlike the first-shift MCDM, the solution does not necessarily converge monotonically, and as a
result the filter~f is chosen as the filter which results in the maximum inCKM during the iterative process.
For largeM, from experience around 8 or more, the iterative method can result in lossof numerical precision
because of exceeding the range of the floating point exponent.

Because the higher-shift MCKD requires better estimates of the fault period T and in application the
period is a fractional number (eg. 170.21 samples per gear revolution), an additional resampling stage is
introduced as a preprocessing step. This additional step resamples the input signal~x at a ratio of:

⌊20T + 0.5⌋ : ⌊20⌈T ⌉ + 0.5⌋

where⌊.⌋ and ⌈.⌉ denotes the floor and ceiling operations respectively and the factor of 20is chosen as
a good balance between computation time and precision. This resamples the dataso that the samples
per revolution is approximately the nearest larger integer; for example 170.21 samples per gear revolution
resamples at a ratio of 3404 : 3600, resulting in 180.01 samples per gear revolution. The resampling is
performed by polyphase filter implementation due to the computational efficiency of the method. This
choice of resampling method should be investigated as future work since it mayaffect computational or
fault-detection performance.

The implementation of this method in MATLAB is available in the External ResourcesSection.
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5. Simulation Results

5.1. Impulse Train with Noise

To more clearly explain the difference between the MED and the effect of the MCKD shift-order, a
simple deconvolution of impulses from white noise is analysed. The signal is formed as

xn = en + f

















inf
∑

k=0

δn−k100

















, n = 0,1,3, . . . ,999

whereen is zero-mean Gaussian white noise of 1 standard deviation and the fault amplitude, f , is varied
between 0 and 5 at a step of 0.01. This signal is not a realistic example of rotating machine fault detection
signals since each impulse is extracted by a nearly independent deconvolution path, while in practical cases
the deconvolution paths for the impulses are similar. This simulation is structured inthis manner to clearly
illustrate the conceptual difference between MED and M-shift MCKD. Fig. 4a illustrates the fault detection
versusf for i.i.d. en for each f , while Fig. 4b illustrates the resulting deconvolved signals whenf = 3. A
deconvolution filter size of 200 and iteration count of 100 is used for eachmethod. From these results the
conceptual difference in increasing MCKD shift level is illustrated; where MCKD deconvolves more and
more impulses with not-necessarily the same deconvolution path as the shift level increases. This clearly
illustrates one of the problems with the standard MED algorithm, which prefers todeconvolve a single
impulse as the result.

5.2. Concurrent Fault Detection

Consider the simple vibration model:

xn = sin(2πn/30)+ 0.7sin(3πn/30)+ fn + en

where fn denotes the periodic fault signal caused by the faulty gear,en is zero-mean additive white Gaussian
noise with a standard deviation of 0.1, andn = 0,2, . . . ,2999. Then consider two faulty elements in the
system on with fault periods of 30 and 100 samples. These faulty elements result in impulse-like vibration
signals convolved with two separate transmission paths:

f a
n = ha

n ∗

















∞
∑

k=0

δn−k30

















f b
n = hb

n ∗

















∞
∑

k=0

δn−k100

















Impulse responsesha
n andhb

n refer to two different the vibration transmission paths from the faulty gears
to vibration sensor, combined with slightly different fault characteristics. We select these two transmission
paths as:

~ha =
[

0.9 −0.3 0.1 −0.05
]T

~hb =
[

0.1 0.8 −0.7 −0.6 0.4 −0.2 0.1 −0.05
]T

and form four cases:

F1: No Fault: fn = 0
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Figure 4: Deconvolution of a noisy periodic impulse train of period 100 with a) illustrating the fault detection versus impulse train
amplitude, and b) normalized plot of the resulting deconvolved signals with impulse train amplitude off = 3, some signals are
polarity inverted for illustration purposes. (Kurtosis and Correlated Kurtosis is independent of the amplitude or polarity of the
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normalizing the resulting signals by peak value and ensuring the impulses are of the same polarity) A different white noise seed is
used for each value of f.
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F2: Fault on Period 30:fn = 0.4 f a
n

F3: Fault on Period 100:fn = 0.4 f b
n

F4: Concurrent Faults on Periods 30 and 100:fn = 0.4 f a
n + 0.4 f b

n

The desired output signals include only the impulse fault signals before the transmission path. The resulting
fault indicators,CKM(T ) for MCKD and the Kurtosis for MED-based methods, are tabulated in Table1.
All algorithms were with filter size of 200, and the MED and MCKD stages were iterated exactly 100
times each. Fifth-shift MCKD was chosen as a good balance between a higher shift method and lower
computation time. AR model orders of 20 were chosen because it is a fairly high model order with respect
to the system dynamics order. Higher numbers indicate a larger indicated fault. From the table, it is clear to
see that only the MCKD algorithm detects the faults successfully. The MED technique performs poorly as
a result of incorrectly deconvolving a single impulse from the no-fault case, and hence a high fault indicator
for the no-fault case. The MCKD method is not only able to strongly detect the faults, but is also able to
indicate exactly which fault periods are present in each case.

Table 1: Fault indicator values by MCKD, MED, and ARMED. The fault indicators are final CK values for MCKD and the final
Kurtosis values for MED and ARMED. All values are no-fault normalized.

Method F1, No Fault F2, Fault on
Period 30

F3, Fault on
Period 100

F4, Concurrent
Faults on Periods
30 and 100

MCKD5(30) 1 9.75 0.929 8.55
MCKD5(100) 1 2.62 79.8 77.4
MED 1 0.139 0.111 0.137
ARMED 1 1.01 1.09 0.995

Fig. 5 illustrates the resulting signals for the MCKD approach under concurrent fault condition,F4. It is
clear that the faults with a period of 30 and 100 are successfully isolated separately during the deconvolution
process, despite the fact that the noise level seems to obfuscate the faultsignals entirely.

Additionally, the simple fault casesF1 (no fault) andF3 (fault of period 100) are compared using
the Complex Shifted Morlet Wavelet Transform [17]. The Complex Shifted Morlet Wavelet Transform
is a Morlet Wavelet-based narrow-band filter approach with centre frequency varied across the frequency
range. The bandwidth is fixed across all centre frequencies. Results for these two simple fault cases are
illustrated in Fig. 6 for the Discrete Fourier Transform and Complex Shifted Morlet Wavelet Transform.
A slight difference can be observed in the Fourier spectrum, the repeating fault canbe slightly observed
in the wide-bandwidth Complex Shifted Morlet Wavelet Transform, and the fault can barely be seen in the
narrow-bandwidth Complex Shifted Morlet Wavelet Transform. In the wide-bandwidth case, Fig. 6b, the
narrowband envelope for centre frequency of 0.75π rad/sample is compared for no fault and fault cases.
This centre frequency is chosen for investigation since the scalogram for the fault signal appears to indicate
the fault best around this centre frequency. The Kurtosis of this envelope indicates the fault correctly, but
not nearly as strong as the difference observed for MCKD in Table 1 and illustrated in Fig. 5. Unlike
standard time-frequency and filtering methods, the deconvolution methods aimto actively cancel the noise
– as opposed to extracting a subset of the noise.
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Figure 5: Simulated resulting signals for concurrent fault detection afterprocessing with indicated method. All signals are normal-
ized and some signals are polarity flipped for better illustration.
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Figure 6: Simulated signals with no fault (signal F1) and fault (signal F3)comparing by a) Discrete Fourier Transform spectrum,
b) Complex Shifted Morlet Wavelet Transform using a wide-bandwidth and c) Complex Shifted Morlet Wavelet Transform using
a narrow-bandwidth.
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Figure 7: Gearbox and experimental equipment layout.
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Figure 8: Faulty gear 1 with seeded tooth chip.

6. Experimental Results

For validation, vibration data is collected and compared from a gearbox with and without a gear chip.
The machine configuration, Fig. 7, is composed of a motor, gearbox, and brake. Two gears are used for the
Gear 1 position; one in healthy condition and one with a gear crack, Fig. 8. The machine is operated at 10%
load and the rotational frequency of Shaft 1 is varied between 10, 15, 20, 25, 30, 35, and 40 Hz [27]. The
accelerometer is of model PCB 352C67 and the data is aquired through a DSPSiglab 20-42 Signal Analyzer
to a laptop [28]. The vibration accelerometer sampling frequency is varied according to the rotational speed
between 1280 Hz and 5120 Hz, and 8192 samples are aquired for each measurement. At each frequency,
two non-fault vibration measurements and a single fault vibration measurement is aquired and processed.

In the ARMED method proposed by H. Endo and R. Randall, the authors suggest that the MED stage
should just be performed for only a few iterations to prevent erroneously extracting impulses [9]. Fig. 9
illustrates the results of MCKD, MED, and ARMED versus the iteration in the deconvolution stage for the
experimental gear chip data. It can be seen that for both the MED and ARMED approach, the deconvolved
signals indicate the fault clearest with a high iteration count, although the methods fail to extract a fault
impulse for each revolution of the faulty gear. Reducing the iteration count does not appear to resolve
this problem in either case. As a result, for the duration of this paper the MEDalgorithm is executed to
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Figure 9: Deconvolved signals versus deconvolution iteration for a) first-shift MCKD, b) MED, and c) ARMED for an AR model
order of 100 and filter sizes of 200 samples. The vibration data is from thegearbox under gear chip fault at 40Hz shaft speed and
10% load and resulting signals are normalized by peak values with some signals being polarity swapped for better illustration.

convergence instead of being limited to just a few iterations. Fig. 10 illustrates the deconvolution results for
the same fault vibration signal versus filter size. By close inspection, it is clear that for the MCKD method a
higher filter size results in improved results. With the MED approach the repeating fault is roughly extracted
at around a 50 filter size, and larger filter sizes cleans the signal up but at a cost of missing many of the fault
impulses.

The general procedure for the data processing is as follows:

Step 1: Shaft 1 speeds for each data measurement are assumed to be constant and close to the
indicated frequency. To calculate the speed, the Discrete Fourier Transform is applied
and peak detection is performed within the vicinity of the expected shaft speed. The
period of Shaft 1 in number of samples is referred to asT , and can be a fractional
number of samples (such as 172.32 samples per gear revolution). Direct speed or
tachometer measurement would result in better performance of the MCDK method.

Step 2: Generate AR models at each operational frequency from the second no-fault data mea-
surement of order⌊0.4T + 0.5⌋, i.e. 40% the number of data samples corresponding to
a single Shaft 1 revolution and rounded to the nearest integer. The Aikaike Informa-
tion Criterion is not used to select the AR model orders because it erroneously overfits
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the data by suggesting model orders almost equal to the dataset sizes of around 8000
samples.

Step 3: Calculate AR model prediction residuals for the first no-fault data and the fault data
measurements by 1-step ahead prediction.

Step 4: Deconvolution filter sizes for both MED and MCKD are selected as⌊0.8T + 0.5⌋, i.e.
80% the number of data samples in a single Shaft 1 revolution and rounded to the
nearest integer.

Step 5: MED is performed on each AR residual, each first no-fault dataset, and each fault
dataset; resulting in the signals for MED and ARMED methods. The Kurtosis ofeach
resulting output signal is calculated as a fault indicator.

Step 6: First, third, and fifth-shift MCKD is applied about periodT for each first no-fault
dataset, and each fault dataset.CKM(T ) is calculated from the resulting deconvolved
signals as a fault indicator whereM corresponds to the shift of the MCKD algorithm
(eg.CK3(T ) is used as the fault indicator for third-shift MCKD).

Time synchronous averaging is not considered as a preprocessing step due the significant loss of in-
formation through this operation, and the lack of tachometer or detailed speedometer information in this
experimental setup. The deconvolution filter sizes and AR model orders for the fault datasets and first
no-fault datasets are tabulated in Table 2. These high-length deconvolution filters are selected because the
time-domain plots more clearly illustrates the faults.

Table 2: Estimated shaft 1 period and corresponding deconvolution filtersizes for no-fault and fault cases.
No-Fault Dataset Fault Dataset

Shaft 1 Period,T Deconv. Filter Size AR Model Period,T Deconv. Filter Size AR Model
Frequency (# Samples) L (# Samples) Order (# Samples) L (# Samples) Order

10 Hz 260.1 208 104 277.0 222 111
15 Hz 173.7 139 69 177.2 142 71
20 Hz 259.2 207 104 263.6 211 105
25 Hz 207.0 166 83 209.6 168 84
30 Hz 172.4 138 69 174.2 139 70
35 Hz 147.6 118 59 149.0 119 60
40 Hz 129.2 103 52 130.3 104 52

The resulting processed signals for no-fault and fault conditions at 35Hz are compared in Fig. 11. All
processed signals under gear chip fault are plotted in Fig. 12 for all frequencies and all methods. From
these results it is clear that the MCKD method extracts the expected single impulseper gear revolution,
while the MED-based methods tend to miss most of the fault impulses. The detectedfault impulses by
different methods do not necessarily line up as a result of the different phase lags of the resulting filters. The
exact placement of the faults in the time domain can be recovered by simply plottingthe FIR filter responses
and typically the lag is clear in these plots.
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Figure 11: Experimental acceleration data with fault detection processingwith a) gear chip and shaft 1 speed of 35 Hz, and b)
normal gear and shaft 1 speed of 35 Hz. All signals are normalized bypeak values and some signals are reversed in polarity for
better illustration.
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better illustration.
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Fault detection based on deconvolution filter sizes of 2 through 150 samplesare analysed and compared,
Fig. 13. The filter size is chosen as the investigated parameter here because Fig. 9 illustrates that both
methods indicate the fault better at a high iteration count, while from Fig. 10 it is unclear at which filter
size each method performs best at. From the plots it is clear that MCKD method significantly outperforms
the MED method, often performing over 10 times better. The performance gainby increasing the shift from
first to third and fifth shift is very significant. In Fig.13f, the fifth-shift MCKD performs worse than all
other methods for a brief filter size range, this could be as a result of poormachine speed estimation or
deconvolution convergence problems. Also important to note is that the MED approach performs similarly
to the ARMED approach, indicating that the AR stage may not be required forsome datasets.

7. Online Condition Monitoring Implementation

In industry application, fault detection during machine operation is critical in preventing equipment
damage or failure. Presented here is a modification of the MCKD technique to monitor the health of a
machine online and generate fault alarms.

Two operations for buffering and downsampling are defined as:

Data buffering by factor R and no overlap, BR :
[

x1 x2 x3 . . .
] BR(...)
−−−−→



































x1 xR+1 x2R+1 . . .

x2 xR+2 x2R+2 . . .
...

...
...

. . .

xR x2R x3R . . .



































Downsample by factor D,D ↓:















































x0,0 x0,1 x0,2 . . .

x1,0 x1,1 x1,2 . . .

x2,0 x2,1 x2,2 . . .
...

...
...
. . .

xI,0 xI,1 xI,2 . . .















































D↓
−−→















































x0,0 x0,D x0,2D . . .

x1,0 x1,D x1,2D . . .

x2,0 x2,D x2,2D . . .
...

...
...

. . .

xI,0 xI,D xI,2D . . .















































Fig. 14 illustrates the online implementation schematic. The presented implementation is for a single
accelerometer near both Shaft 1 and Shaft 2, but performance can beimproved by placing two different
accelerometers close to each shaft. A speed measurement of one of the shafts is recommended, but if
the system is expected to be operating at only a single operating speed then Discrete Fourier Transform
peak detection on the acceleration signal can estimate the exact machine speed. To reduce complexity, the
MCKD blocks performs only a single deconvolution filter update iteration for each column of input data
and the filter update downsampling factorD controls how often a filter update iteration is performed. The
buffer factorF controls the window size of MCKD iteration and a value resulting in around 10 times the
period of the shaft is recommended. The buffer factorW controls the window size forCK fault indicator
generation, a larger factor will result in a more slowly changing fault indicator and slower time response
to a fault while a smaller factor results in a more noisy fault indicator but quicker time response to a fault.
Constant gain values ofk1 andk2 convert the measured speed to the periods of Shaft 1 and 2 respectively.
The alarm thresholds should be selected based on indicator values underno-fault. fshaft 1and fshaft 2refer to
the current FIR deconvolution filters for the respective shafts.

For testing the online implementation, basic input sequences are formed for each operating frequency
by looping the experimental no-fault data ten times followed by looping fault data ten times. The data is
looped by direct concatenation of the datasets reduced to the number of samples corresponding to the largest
number of complete shaft revolutions in the dataset. A deconvolution filter sizeof L = 200, no decimation
factorD = 1, and filter update and fault indicator buffer sizes of 5000 is usedW = F = 5000.
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Figure 13: Experimental fault detection by method with varied deconvolution filter size for the machine operating at a) 15 Hz, b) 20 Hz, c) 25 Hz, d) 30 Hz, e) 35 Hz, and f)
40 Hz. Be careful to note the log-scale on the y-axis, meaning theMCKD3 andMCKD5 typically perform significantly better at fault detection.
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Figure 14: Online implementation of MCKD-based fault detection for a two-shaft gearbox with a single accelerometer. Threshold
and FIR filter plots are creative illustrations, not data.

Table 3: Computation times for onlineMCKD gear chip fault detection on looped experimental data.

Shaft 1 Fre-
quency

Number of Sam-
ples

Duration of Data
Acquisition

MCKD1 Data Pro-
cessing Time

MCKD5 Data Pro-
cessing Time

(kSamples) (Seconds) (Seconds) (Seconds)
15 Hz 326 128 26 44
20 Hz 324 63 27 45
25 Hz 325 64 24 45
30 Hz 325 64 34 53
35 Hz 324 63 25 45
40 Hz 326 64 35 54

Table 3 illustrates the number of samples per dataset after looping, the time takento measure the data,
and the processing time for the proposed online fault detection implementation. The processing times
are measured on Intel Core 2 Duo CPUs at 2.00GHz with implementation in MATLAB without parallel
processing. From the processing times, it is clear that the proposed methodis easily achievable in an online
application. Fig. 15 illustrates the online fault detection results for first-shiftMCKD. It is clear that the
fault detection performance is good in online application, and the proposedthreshold alarm on this signal is
feasible. The trough in the fault indicator as the fault is introduced is as a result of both the dataset looping
not being phase aligned during dataset concatenation between the no-fault and fault data, and the slight
machine speed difference between the two datasets. Fig. 16 presents the fifth-shift MCKD results. Clearly
the MCKD method is very strong at detecting the faults, with the fifth-shift MCKDmethod providing clearer
results than the first-shift implementation but at a higher computational cost.
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Figure 15: Online results for first-shift MCKD fault detection for machineunder 10% load at a) 15 Hz, b) 20 Hz, c) 25 Hz, d) 30
Hz, e) 35 Hz, and f) 40 Hz. The data is from looped the experimental data.
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Hz, e) 35 Hz, and f) 40 Hz.
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8. Conclusion

This paper introduces a new deconvolution process, MCKD, which aims to deconvolve periodic im-
pulse faults from a machine vibration signal. Simulation data and experimental gear chip vibration data
were compared between MCKD and the established methods of AR residual, MED, and ARMED. The
experimental results indicate that the AR residual method is inadequate, whichis as a result of the fault
impulses being of comparable amplitude to the system noise and non-LTI characteristics of the signal. Ad-
ditionally, the experimental results indicate that the ARMED method performs similarly to direct MED
application; indicating that the AR stage of ARMED is unnecessary on some datasets. Finally, the sim-
ulation and experimental results indicate the MCKD method is the most successful in deconvolving the
periodic faults and has significantly better gear chip fault detection results,often on the order of 10 or more
times better at fault detection on the experimental data. There is a significant performance advantage gain
from increasing the shift-order from first to third, but fifth-shift MCKDdid not significantly outperform
third-shift. As a result the third-shift MCKD method is recommended in application. Clearly the MCKD
method is a notable improvement upon the existing state-of-the-art methods andmay include applications
beyond rotating machine fault detection.

Online application of the MCKD method is shown to be computationally implementable on apersonal
computer, and results from fault detection on looped experimental data indicates it is a strong method in
online application and a simple threshold alarm is feasible.

Further work should investigate the application of MCKD towards detecting other types of gear faults,
bearing faults, and rotor-to-stator rubbing. Concurrent fault detection should be investigated on an experi-
mental setup. The choice of polyphase filter resampling should be investigated further, since it may have a
significant effect on the computational cost and algorithm fault detection performance.
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